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A theory of crystallization is formulated for random copolymers which crystallize with the non­
crystallizable co-units incorporated into the crystalline lattice as defects. The appropriate melting point 
equation and other associated thermodynamic properties are derived for this model as a function of 
crystal thickness and comonomer concentration. The formation of lamellar type morphology is assumed 
to be a kinetically determined phenomena and nucleation theory is utilized accordingly. The isothermal 
lamella thickness is predicted to increase in a definitive manner as the noncrystallizable comonomer 
concentration X increases, while the associated isothermal growth rate is predicted to decrease. The 
variation of lamella thickness with X when the copolymer is quenched or cooled at a uniform rate is also 
qualitatively predicted. Under these conditions lamella thickness decreases with increasing X, which is 
in accord with previous experimental observations on random copolymers of tetrafluoroethylene and 
hexafluoropropylene as well as other random copolymers. Theory also suggests how the surface free 
energy parameters (T e and (T can be d~termined from isothermal crystallization experiments for a series 
of random copolymers of varying composition. 
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1. Introduction 

A random copolymer can potentially crystallize in 
two extreme ways. It can form a two-phase system in 
which the crystalline phase is composed entirely of 
A units and is in equilibrium with a mixed amorphous 
phase of A units and non crystallizable comonomer B 
units (comonomer exclusion). Alternatively, the 
copolymer may form a two phase system in which the 
crystalline phase is a solid solution of A and B units; 
the comonomer B units produce defects in the crystal­
line A lattice and both phases have the same composi­
tion (comonomer inclusion). The question arises as 
to which state is more characteristic of the experi­
mentally observed crystalline state. One can try to 
answer this question by invoking thermodynamics: 
if the observed state is a true thermod ynamic state, 
then we need only determine the state of lowest free 
energy. Figure 1 schematicall y illustrates the two 
models. 

In Flory's theory of copolymer crystallization [1] I it 
is tacitly assumed that . the state of lowest free energy 
is the two phase system where the comonomer B units 
are excluded from the crystal. However, on a priori 
grounds, there is no reason to believe that the ex­
clusion model is thermod ynamicall y more stable than 
the inclusion model. Moreover, the question as to 
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I Figures in brackets indicate the litera ture references at the e nd of this paper. 

which state is more stable is largel y academic because 
the observed state probably corresponds to a meta­
stable state determined by kinetic factors. This is 
certainly the case in homopol ymer crystallization. 
Thick crystals are thermodynamically more stable 
than thin lamellar crystals with high surface to volume 
ratios; nevertheless, metastable lamellar morphology 
develops under the usual kinetic conditions of homo· 
polymer crystallization. 

FIGURE 1. Two extreme representations of lamellar random co­
polymer crystals, the exclusion model (left) and inclusion model 
(right). 

Real copolymer crystals may exhibit a morphology 
intermediate to the two extremes in figure 1. In the 
present paper, a simple theory for random copolymer 
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crystallization is formulated which adopts the view that 
lamella crystalline morphology is kinetically deter­
mined and that the inclusion model is more character­
istic of the crystalline state. A preliminary account 
of this theory has been given previously [2]. 

In section 2 melting temperature relationships are 
derived as a function of copolymer composition and 
crystal thickness. The heats of fusion associated with 
the two models are also considered. In section 3 an 
elementary kinetic theory of crystallization is formu­
lated and in section 4 the conclusions of the study are 
briefly outlined. 

2. Thermodynamics 

2.1. Equilibrium Melting Point 

Melting point equations have previously been 
derived for the exclusion [1] and inclusion [3], [4] 
models. What follows is an alternative derivation of 
the equilibrium melting point for the inclusion model. 
First, we enumerate the assumptions upon which the 
derivation rests: 

1. The heat of fusion !1H and the entropy of fusion 
!1S are independent of temperature; !1H(T}=!1H(T,~} 
and !1S(T} = !1S(T!:,} = !1H(T~)/T?n where T?n is the 
equilibrium melting point of the homopolymer. 

2. Compositional changes do not affect the entropy 
of fusion; if X is the mole fraction of B co-units in the 
copolymers, then !1S(T, X)= !1S(T, O}= !1S(T~}. 

3. The heat of fusion is a simple linear function of 
the number of comonomer units that enter the crystal: 

!1H(T,X) = !1H(T,~) -X !1Hd (1) 

where !1H d is the heat of transition (an excess enthalpy) 
associated with the formation of a defect in the crystal­
line lattice,!1H d ;;. O. 

Assumption 1 is the usual and simplest approximation 
employed in determining the bulk free energy differ­
ence between melt and crystal; an analysis of the error 
inherent in this approximation has been made [5]. 
Assumption 2 is a good approximation if the composition 
of the crystal and melt are identical. Moreover, a 
sizable fraction of the entropy of fusion is configura­
tional entropy (estimated to be about 75% for poly­
ethylene [6]) which should be relatively insensitive 
to compositional changes. Assumption 3 is valid when 
comonomer defects in the crystal are isolated (low 
concentrations required) so that they do not interact. 

When a copolymer crystal, free of nonequilibrium 
defects and surface effects, is in equilibrium with 
the melt, the melting temperature T?n is given by 

(2a) 

Utilization of the previously mentioned assumptions 
then yields 

(2b) 

where A == !1H dl!1H (T?n ). 

2.2. Melting Temperature of Lamellar Crystals 

Small crystals with high surface to volume ratios 
will melt at temperatures below the equilibrium melting 
temperature T~,. Denoting by !1G the bulk free energy 
difference between copolymer crystal and melt, a 
thin lamellar crystal of thickness l is in equilibrium 
with the melt when [5] 

!1C - 2(J"ell = 0 (3) 

where (J"e is the surface free energy of the basal plane 
of the lamellar crystal. For T ",; T?" the bulk free energy 
difference !1C(T, X) is given by 

!1G(T,X) = !1H(T,X) - T!1S(T,X) (4a) 

and thus from assumption 2 and eqs (I) and (2) 

!1G(T,X) = !1H(T~)(T~, (X) -T) Inn' (4b) 

Combining eqs (2b), (3), and (4b), the following equation 
for the melting temperature T mel) of a lamellar 
copolymer crystal obtains: 

{ 2(J"e } Tm(l}= 1 - !1H (T~) Oil) - AX 1i:,. (5) 

Notice that eq (5) reduces to eq (2b) for large l, as it 
should. 

Equation (5) is slightly different in functional form 
than the melting point equation first derived by Eby [3], 
[4] for solid solution copolymer crystals. In addition to 
the assumptions mentioned above, there is an un­
necessary series expansion; the effect of comonomer 
concentration and finite crystal thickness on the melt­
ing temperature is evaluated to first order (higher 
order corrections which are small are ignored). The 
present derivation has avoided the use of series expan­
sions and thus the melting point depression (T~ - T m) 
is predicted to be slightly larger by a factor T~/T m than 
the original Eby equation. However, ~efitting 2 the data 
of [4] yielded constants which agreed within the 
limits of error with the former ones and which did 
not alter the conclusions in [4]. 

As mentioned previously, Flory [1] assumes that the 
copolymer crystal is composed entirely of A units; 
B co-units are excluded and remain in an amorphous 
phase. The melting point depression is caused by the 
fact that preferential ordering of the copolymer chains 
is required for crystallization (an entropy effect) 
whereas in the present case, the melting point depres­
sion is caused by the defective heat of fusion that 
accompanies the crystallization (an enthalpy effect). 

J Melting point data [4] for tetrafluoroethylene and hexafluoroethylene random copolymers 
were reanalyzed using eq (5). The following new results were obtained: r: =612 ±4 K, 
CTf';= 61±23 ergs/em!, and .6.Hd=O.042±O.003 eV. , For the purposes of comparison the 
the original results were TUm = 617 ±S K,O'e= 77 ±27 ergs/cm 2 and 6H d = 0.047 ±O.OO3 eV. 
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For a random copolymer and low comonomer concen­
trations, the Flory equation reduces to 

T = (1 - A'X) TO m til (6) 

where A' = RTml IlH (1~.). Comparison of eq (6) with 

eq (2b) shows that they are identical in form except 
that RTm has replaced IlHd in eq (2b) - a manifestation 
of the different effects considered (entropy versus en­
thalpy). Although Flory did not consider the effect of 
crystal size on the melting temperature, such an 
effect is obtainable from his theory [see eq (14) of ref. 
[1]]. The resulting equation is similar to eq (5) which 
implies that melting temperature data taken as a 
function of copolymer composition and crystal thick­
ness cannot distinguish between the comonomer 
exclusion and inclusion crystal models. 

2.3. Heats of Fusion 

Crystallinity studies (density or x-ray) combined 
with calorimetric studies can, in principle, determine 
which model is more appropriate. By assuming that 
enthalpy effects are additive it can be shown in a 
straightforward fashion that the observed heat of fusion 
IlH* for the inclusion model is given by 

(7) 

where X is the degree of crystallinity and IlH e is the 
excess enthalpy associated with forming the basal 
surfaces of the lamellar crystal. However, for the 
exclusion model, we have 

IlH */X= IlH - 2IlHe/l. (8) 

Note that for the exclusion model IlH */X is inde­
pendent of the co-unit concentration X whereas it is 
linearly dependent on X for the inclusion model. 

3. Kinetics 

3.1. Lamella Thickness 

When nucleation theory is applied to the crystal­
lization of linear chain molecules, the theoretical 
crystal thickness I * is given by F] 

1*=lc +81 (9) 

where Ie = 2crel IlG is the critical crystal thickness 
and 81 is a small additive term (usually about 10 A.) 
which is a weak function of term perature in the usual 
crystallization temperature range. Crystal thicknesses 
less than Ie are thermod ynamically unstable. 

The experimentally observed crystal thickness 
lObS may differ from I * because crystals may thicken 
with time [8]. In general, 

lobs = le+ C(T) (10) 

where C(T) includes 81 plus any thickening that may 
occur at the crystallization temperature T. Of course , 
C(T) is also a function of time, but it will be assumed 
throughout that we are dealing with the long time (or 
an isochronal) value of C(T). The thermodynamic 
driving force IlG for the crystallization of a random 
copolymer is given by eq (4b); thus 

If ere is independent of the comonomer concentration 
X, then 

I -10 [ T~,- T?n (X) ] 
obs- e 1+ T?n(X) -T +C(T) (12) 

or ifC(T) is independent of X, 

-10 10 [ T?" - T?n (X) ] - 10 10/(X T) 
- obs + e T?" (X) _ T = obs + e , (13) 

where the superscript 0 on lObS and Ie indicates that 
these quantities refer to the homopolymer; from eq 
(2b) we have 

I(X,T)=AX/[(I-T/nn)-AX] (14) 

Note that I(X, T) increases monotonically with both 
X and T; that is, aj/aT> 0 and allaX> o. Therefore, 
eqs (13) and (14) show that isothermal plots of lObS, 

say at T 1, against I (X, T1 ) are linear with intercept 
IgbS(Tt ) and positive slope 12(Tt ). Random copolymers 
of various comonomer concentrations crystallized at 
the same temperature should form crystals with thick­
nesses that increase with increasing comonomer con­
centration (see fig. 2). For low concentrations we have 

FIGURE 2. 

I(X, T) = (~T~n T) X 
m . 

(15) 

T2 >TI 

SLOPE = 1~(T) 

INTERCEPT= l~bs (T) 

lj 

o f (X,Tl 

Variation oj theoretical, isothermal lamellar thickness 
with the comonomer concentration X. 

The variable f{X. T) plotl t!d along the abscissa increases monotonically with X and 
is proportional to X for small X. 
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and thus, isothermal plots of lObs against X are initially 
linear with a positive slope equal to l~(T)AT!/ 

(T~ - T). . 
The derivation of eq (13) from eq (12) assumed that 

the thickening that occurs at the crystallization 
temperature T was independent of the comonomer 
concentration X. A better approximation is 

aCI aX T = constant. (16) 

In general 

C(T, X) = C(T, 0) + axel X + ax2~1 X2 + . 
a TaT 2! 

(17) 

but when eq (16) holds, eq (13) becomes 

lObS = l~bS + lU(X, T) + ~iITX, (18) 

Even if approximation (16) is not strictly true, eq (18) 
will hold approximately when second and higher order 
terms in eq (17) are small compared to the first order 
term. 

The equilibrium theory of Flory [1] for the exclusion 
model also predicts that crystallite thicknesses increase 
with increasing X for a random copolymer. At first 
this result for the exclusion model seems unreasonable 
because long uninterrupted sequence lengths of 
crystallizable units are decreasing with increasing X. 
However, in the Flory theory a compensating decrease 
in crystallinity accompanies the increase in crystallite 
thickness. Thus, both the exclusion and inclusion 
models (equilibrium and kinetic theories, respec· 
tively) predict that the isothermal crystal thickness 
increases with increasing concentration of the non· 
crystallizable co· unit. 

3.2. Nucleation and Crystal Growth 

In the simplest approximation, the nucleation 
rateS of a coherent sudace nucleus is given by [7-9] 

S=So exp (-AG*/RT) exp (-2a-lc/RT) (19a) 

where So is a constant, AG* is the activation free 
energy for the transport of a polymer segment across 
the melt·crystal interface and a is the lateral surface 
free energy of the lamellar polymer crystal. For nuclea· 
tion controlled crystal growth, the lateral growth rate 
of a copolymer crystal is proportional to S [7, 10]. 
Therefore, since lc=lg [1+ f(X, T)] from eq (12), 
we have 

InS + AG*/RT=- 2al~ [1 + f(X, T) ]/RT+ InSo. 
(19b) 

Equation (19b) suggests that isothermal plots of 
In S+AG*/RT againstf(X, T) are linear with a nega­
tive slope equal to 2aig/RT (see fig. 3). In principle, 
the homopolymer critical thickness value l2 can be 

obtained from isothermal crystallization experiments 
(crystal thickness measurements required) by using 

NUCLEATION RATES 

s = So EXP(-t:.G* I RT) EXP (-20-1c /RT) 

1n s + t:.G* / RT= -20-19 [ I + f (X,T)]/RT + 1n So 

-->'d--""""~--- REGIME OF 

---+'...-----\----""0...,-_ CRYSTAL GROWTH 

1n s+ t:.G'>RT 

I 
f (X,T) 

FIGURE 3. A schematic for the variation of the theoretical nucleation 
rate with temperature and composition. 

The line labeled XI indicates how the nucleation rate might vary when quenching a 
copolymer with composition XI from a high to low temperature. Most of the crystallization 
will occur over a narTOW range of temperature of average temperature TI . A second copoly­
mer with composition X2 (X2 > Xd will crystallize during similar quenching with an nver­
age temperature T'J. which is less than Tlo 

eqs (13) or (18); thus, the surface free energy param­
eter (J" can be determined from eq (19b) by measuring 
isothermal growth (nucleation) rates. The other surface 
free energy parameter (J"e is obtained, of course, from 
the relation 

If we ignore for the moment the presence of AG* in 
eq (19), then two copolymers, one with comonomer 
concentration Xl and the other with a higher concen­
tration X2 , will grow at approximately the same rate 
if T?»(X I ) - Tl =' T?,,(X 2 )- T2; that is, S(Xt. TI) = 
S(X2, T2 ) at equal undercoolings. Since X 2 > XI, 
Tlh(X2 ) < n,(X I) by eq (2b) and, therefore, T2 < T I • 

To obtain the same crystallization rates as X increases 
requires lower absolute temperatures. 

Now the temperature coefficient of AG* is negative 
(S decreases with decreasing T) and the effect of diffu­
sional transport is to lower even farther the tempera­
ture (T2) required to obtain equal growth rates. Usually 
a WLF type of free energy is employed for AG*: 

(21) 

where C l and C2 are positive constants and Til is the 
glass transition temperature of the polymer [8, 9]. 

Experimentally, it has been observed that the crystal 
thickness of tetrafluoroethylene and hexafluoropro­
pylene random copolymers [3] as well as other rar.dom 
copolymers [11, 12] tends to decrease as comonomer 
concentration X increases in apparent contradiction 
to the results of section 3.1. However, some of these 
copolymer crystals were prepared under rapid cooling 
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conditions (quenching of thin films of melt in ice 
water [13]) or at uniform cooling rates. During cooling 
most of the crystal growth will occur over a small 
temperature interval; say the average temperature 
in this interval is Tl for a copolymer of concentration 
XI. If a second copolymer of higher concentration X2 is 
quenched in the same way, then the average tempera· 
ture T2 of the temperature interval where most crystal 
growth occurs will be lower than TI for reasons dis· 
cussed above (see fig. 3). In the absence of diffusional 
transport effects, the two copolymers would crystallize 
approximately at the same effective undercooling and 
thus, we might expect crystal thicknesses to be in· 
dependent of comonomer concentration. However, 
the transport term tends to reduce T2 causing the 
effective undercooling of the second sample of higher 
concentration X2 to be greater than the first. Higher 
effective undercoolings would cause a decrease in 
lamellar thickness. 

Th-e argument that the transport term ~G~LF causes 
the effective undercooling for equal growth rates to 
increase as the co-unit concentration X increases 
assumes that Tg is independent of X. What is the situ­
ation if Tv varies with X? If Tv increases with X the 
argument is strengthened; if Tv decreases with X , a 
more careful analysis is required to determine whether 
or not the argument is valid. In the appendix such an 
analysis is carried out and the conditions for which the 
argument is still valid are defined. 

For the tetrafluoroethylene-hexafluoropropylene ran­
dom copolymers, annealing studies [14] have shown 
that the rate of annealing is determined by the under· 
cooling (T~" (X) - Tanneal); i.e., the crystal thickness of 
copolymers with different concentrations will thicken 
approximately at the same rate at equal undercoolings. 
The rate of annealing decreases exponentially as 
(T~" (X) - Tanneal) increases. Thus , if diffusional trans­
port increases the effective undercooling at which 
crystal growth occurs, as has been argued, then the 
contribution that crystal thickening makes to the ob­
served crystal thickness decreases as X increases. 

In summary for experiments where the copolymer 
is quenched or cooled at a uniform rate, diffusional 
transport effects can cause the effective undercooling 
at which crystallization occurs to increase as the non· 
crystallizable co-unit concentration X increases. 
Higher undercoolings cause both terms in eq (10) for 
the observed crystal thickness to decrease with 
increasing X. 

4. Conclusions 

The main conclusions of this theoretical study are 
summarized below: 

(1) Both the inclusion and exclusion models predict 
a depression of the crystalline melting point. For the 
inclusion model the melting point depression is 
caused by a defective heat of fusion that accompanies 
the crystallization, whereas for the exclusion model, 
the depression is caused by the fact that preferential 
ordering of the copolymer chains is required for 

crystallization which raises the entropy of fusion. 
However, careful crystallinity studies combined with 
calorimetric determinations of heats of fusion can 
ascertain which model is more appropriate for a given 
random copolymer system. 

(2) The kinetically determined, iso th ermal lamella 
thickness is predicted to increase while the growth 
rate decreases with increasing concentration X of 
the noncrystallizable comonomer. Flory's equilibrium 
theory for the exclusion model also predicts that the 
crystal thickness increases with X and thus, both 
theories are qualitatively equivalent in this respect. 
This aspect of the theory has yet to be tested experi­
mentally. 

(3) Qualitatively, the crystal thickness is predicted 
to decrease with increasing X when the copolymers are 
crystallized by quenching or cooling at a uniform rate. 
This is in accord with existing experimental evidence. 

(4) The surface free energy parameters (Fe and (F can 
be determined from isothermal crystallization experi­
ments by measuring crystal growth rates and thick­
nesses as a function of copolymer composition. This 
method is unlike the usual method employed for homo­
polymer crystal growth studies where temperature is 
a variable. 

(5) The kinetic theory of crystallization formulated 
herein is applicable, in principle, to any model. Both 
inclusion and exclusion models or any intermediate 
model will depress the equilibrium melting point 
T?" of the homopolymer to some new equilibrium value 
T?" (X). Since the kinetics of crystallization ultimately 
depend on thermodynamic quantities , in particular 
T?" and T?" (X), all models will qualitatively affect the 
kinetics in the same manner. The fundamental quan­
tity which enters the kinetic theory is 

(T~" - T?" (X))/ (T?" (X) - T) 

For the inclusion model this quantity depends on com­
position (X) in a specific way and is defined as/(X, T) 
in this paper. However, it has been shown that for low 
concentrations of the noncrystallizable co-unit, both 
inclusion and exclusion models yield equivalent ex­
pressi&ns for T~" (X) [see eqs (2b) and (6)]. It seems 
reasonable, therefore, to conjecture that in the limit of 
low concentrations the functional form of / (X, T) is 
correct for all molecular models of the crystalline state. 

5. Appendix. Variations in AG ttLF With 
Composition and Temperature 

In the main text it was argued that diffusional trans­
port effects can result in higher effective under­
coolings for copolymers of higher concentration (X) 
when quenching on cooling at a uniform rate. The 
argument assumes that Tg either is unaffected or 
increases as X increases. If aTv/aX is negative the 
argument must be qualified. For this purpose the varia­
tions in t1G"WLF/RT with respect to composition and 
temperature are calculated below. 

Let Z == ~G"WLF/RT, then from eq. (21), we have 
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and 

la InZI 1 
----;;r = C2 + T- Tg 

la InZI = aTg/ax . 
ax C2 +T-Tg 

IF aTg/ax is negative the argument will be valid if the 
change in Z between the two crystallization tempera­
tures, Tl - T2= T~ (X 1) - T<:" (X 2) , exceeds the change 
in Z with concentration. To a first approximation this 
condition can be expressed as 

laJnZI 0 _ 0 lainzi aT [Tm(X 1 ) T m (X 2 )]> aX [X2 -X1 ] 

or 
aTg T\k(X 1) -T\k(X2 ) 

--< ' . 
aX X 2 -X1 

From eq (2b), we have 

_aTY<ATo 
ax m' 

For example, A = 1.4 and T~ = 612 K for the tetra­
fluoroethylene-hexafluoropropylene random copoly­
mers and thus, the argument is valid if Tg decreases 
at a rate less than 8 K for a 1 percent change in 
composition_ 

The authors thank J. S. Weeks for his helpful 
suggestions and critical reading of the manuscript. 
Preliminary efforts in the direction of this work were 
reported previously to the American Physical Society 
[15]. 
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