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Since the introduction of general-purpose computers during the early 1950’s, competing techniques of
mathematical programming have been developed, analyzed empirically, and compared. In this paper we survey
fifty articles (spanning the period 1953-1977) which report the computational testing of mathematical programming
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1. Introduction

Computational experiments with mathematical programming techniques have taken place throughout the
past twenty-five years. In 1953, for instance, Hoffman et al. [A1]' compared the numerical efficiency of the
simplex method, the fictitious play method of G. Brown, and the relaxation method of T. S. Motzkin for
solving several symmetric matrix games. Since 1968, an increasing number of experimental studies have
been published in scholarly journals. Unfortunately, the methodology for conducting such computational
experiments has not received systematic study, and no set of generally accepted guidelines has been
available.

The purpose of this paper is to survey a substantial sample of the published articles and working papers in
this field. The fifty papers chosen for the study are listed in Appendix A. Our intention is to document the
methods employed in conducting these experiments, including the controls maintained, the performance
measures used, the extent of a priori experiment design, and the forms in which the results were reported.

In selecting articles, we attempted to locate as many bona fide computational experiments as possible. We
rejected studies presenting “new” algorithms, even when extensive computational testing was provided. We
wished to restrict attention to papers whose primary contribution was presentation of the empirical evidence.
On the basis of its abstract, title, and/or introduction, each of the selected papers indeed qualified as the
result of computational experiments. A majority of them evaluate mathematical programming algorithms;
some evaluate tactical choices within an algorithm; others evaluate the computational efficiencies of
mathematical programming software. All of them present empirical results as evidence of superior or inferior
performance, a feature distinguishing them from publications giving only theoretical bounds or estimates for
computational effort.

The papers that were deliberately left out of this survey are numerous; no doubt this is true of unintentional
omissions as well. Studies that were clearly inferior were excluded; we did not want to single out inadequate
efforts since we felt these were best left undisturbed. A number of works were not included because they were

* The authors are members of the Committee on Algorithms (COAL) of the Mathematical Programming Society. COAL is concerned with computational aspects of mathematical
programming. A related paper is “Guidelines for Reporting Computational Experiments in Mathematical Programming.” which may be requested from John M. Mulvey. John M.

Mulvey's present address: School of Engineering/Applied Science, Princeton University, Princeton, New Jersey 08540.
! Figures in brackets indicate literature references at the end of this paper.
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not accessible to us or because we were unaware of them at the time of the survey. Such papers might well be
included in a revision of this survey.

As indicated in table 1.1, most of the major areas of mathematical programming are represented, as are the
journals which most frequently publish results about mathematical programming. There are ten articles each
on linear programs and on integer programs. The categories of unconstrained optimization, network, nonlinear
programs, and shortest paths have five to seven articles apiece. Quadratic programs. knapsack problems,
systems of nonlinear equations and geometric programs are represented by one to three articles each. Twenty-
six of the fifty articles appeared in refereed journals, whereas eleven are chapters of books or were presented
in proceedings of conferences. Eleven papers are mainly recent technical reports, many of which have been
subsequently submitted for publication. Two theses were included.

TABLE 1.1.  Articles selected for the critical review.

Areas of MP Represented Number
Linear Programs 10
Integer Programs 10
Unconstrained 7
Shortest Paths 6
Nonlinear Programs 5
Networks (Min-Cost Flow) 5
Geometric Programs 3
Systems of Nonlinear Equations 2
Quadratic Programs 1
Knapsack Problems 1
50

Journals Represented Number
Mathematical Programming 8
Management Science 4
Communications of the ACM 3
Operations Research 2
Journal of the ACM 2
SIAM Journal of Numerical Analysis 2
Journal of the SIAM 1
ACM Transactions on Mathematical Software 1
OPSEARCH 1
Australian Computer Journal 1
Computer Journal 1
26

Methods of Publication Number
Published Journals 26
Chapters in Books & Proceedings of Conferences 11
Technical Reports* 11
Theses and Dissertations 2
50

* Many have been subsequently submitted for publication.

Figure 1.1 presents a histogram of the selected articles as a function of publication date. Corresponding to
the three commonly recognized “generations” of computers, we have identified three fairly distinct generations
of computational experiments. We were able to locate only one article that appeared prior to the introduction
of programming languages (FORTRAN was officially introduced in 1959)— the paper of Hoffman et al. [A1],
which appeared in the first generation. Seven papers were found with publication dates between 1960 and
1966 — corresponding to the second generation. The majority (42) of the fifty papers appeared after the
introduction of third-generation computers, such as IBM’s 360 series, in 1968. Note that there seems to be an
upward trend in the number of papers per year.
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FIGURE 1. 1. Distribution of the sample over time.

This survey is arranged according to the following topics: elements of the experiment; experiment design;
and empirical results. Section 2 addresses information pertaining to the elements of the experiment, i.e., the
algorithms and codes which were employed. Were the algorithms presented in unambiguous detail or were
they referred to by name only? Could the computer software be reproduced by other researchers? Were
descriptions of the information structures provided?

The experiment designs are reviewed in section 3. A careful experiment design, in which goals and the
plan for their achievement are clearly laid out, is the keystone of experimental analysis. We shall see that one
of the principles of experimental investigation, viz, replication, is woefully neglected.

Section 4 takes up the issue of how the results of the experiments were presented. For instance, the
performance measures that were used are noted. Incidences of extrapolation and speculation are also
indentified. Section 5 offers suggestions for improving the state of computational experimentation, a topic
taken up more fully in Crowder, et al. |2]. References for the surveyed papers are given in appendix A, and
appendix B contains the form used in evaluating these papers. A copy of the unabridged data (suitably

disguised) 1s available to interested researchers.
2. The Elements of the Experiment

In this section, we are concerned with the amount of detail with which the elements of the computational
experiments were described. We define these elements to include the algorithms themselves and the related
computer software. However, we decline involvement in the debate over where an algorithm ends and its
computer implementation begins. This review uncovered many instances of confusion over this distinction,
and two papers [Al, C11] are noteworthy in their discussions of the matter. It is interesting to note that [A1]
is the earliest paper in our sample and [C11] is one of the latest. In our survey, if an idea was presented as
part of the solution technique or methodology, it was identified as part of the algorithm. On the other hand, if
the idea appeared explicitly in the code and was presented in that light, we included it in our analysis of the

software. This dichotomy may not apply generally, but it proved workable for our purposes.
2.1 Algorithms

Certainly there are many ways to describe an algorithm, and as expected, we encountered various levels of
detail in presentation. Most descriptions fall into one of the following categories: (1) flowchart; (2) primarily
mathematical; (3) verbal; or (4) reference to other documentation. Our concern, however, was whether enough

information was provided so that a reader could understand all of the algorithms to the extent that he could
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repeat the experiment, given sufficient resources. (Repeatability here assumes all other aspects of the
experiment were sufficiently documented.) Thus, when a paper described one algorithm in detail and
referenced the remaining algorithms, we assumed that sufficient detail was provided. When, on the other
hand, any algorithm was referred to by name only, we assumed that sufficient detail was lacking. Figure 2.1
indicates our estimate of the number of papers providing sufficient detail for a determined reader to be able to
understand and repeat the experiment.

NUMBER OF PAPERS
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FIGURE 2.1. Number of papers that provided “sufficient” discussion of the algorithm.

(Shown as a portion of all papers in our study.)

2.2 Software
Since the papers are reports of computational experiments, we feel that it is crucial for the codes employed

to be described adequately. Table 2.1 shows the frequency with which different methods of presentation were
used. The numbers of papers sum to 54 since some papers used more than one method.

TABLE 2.1.  Frequencies of methods of software presentation.

Method Number of papers
Referred to by name only 29
Referenced to other descriptions 13
Extensive discussion 2
Brief discussion 7
Extensive flow chart 1
Brief flow chart 1
Listings included 1

In many cases, for example codes that solve large-scale transportation problems, the computer implemen-
tation has a critical effect on the outcome of the experiments since the empirical results are highly sensitive to
the method of implementation. Indications of data structures within the codes is one test of software discussion
completeness. Figure 2.2 depicts the number of papers that mentioned this topic, which is clearly considered
more important in some areas of mathematical programming than in others. A related subject is the total
storage requirements of the computer software. Five papers gave the amount of storage required; eight papers
mentioned the amount of working storage, and one paper referred to offline) storage.
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FIGURE 2.2. Number of papers that included a discussion of data structures,

displayed by areas of mathematical programming.

As another indication of the lack of attention paid to the software elements, we note that just one paper
presented the time required for input/output. In the folklore of computational experimentation, it is generally
assumed that problems are solved without using external (offline) memory; however, we could not determine
the extent to which this tradition was followed. Further evidence of the lack of attention is provided by the fact
that in twenty-eight papers the computer language for at least one of the codes used could not be determined.
(Of the twenty-nine papers that mentioned language for at least one of the codes, 79% used FORTRAN, 14%
used machine language, and 7% used ALGOL.)

Other important topics regarding the computer software are portability, ease of use, and availability. One
paper [B7] discussed the ease of use of the software used, and is noteworthy in its attempt to quantify this
subjective measure. Two papers advanced portability as a performance indicator; one of these tested it.
Availability of the software was mentioned in nine papers.

Finally, we note the number of papers discussing tolerance settings, since tolerance choice is another
factor that can affect the empirical results. Ten papers addressed this topic. Figure 2.3 presents a histogram
over time of these papers as a portion of all relevant papers. Techniques employing integer arithmetic, such
as shortest paths and minimum cost-flow networks, are not affected by tolerance settings and were omitted.
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FIGURE 2.3. Number of papers that discussed tolerance settings.
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2.3 Problem Class

We examine next how each paper characterized the class of problems to which it referred. In most cases
(80%), the problem class was referred to by generic name only (e.g.. integer programming problems), or by a
brief mathematical definition. The remaining 20% included a more complete discussion. In addition, eight of
the papers discussed appropriate areas of application for using the technique.

An area of importance in experimental design is the statistical relationship between problem class (the
population) and specific representatives (the sample) of that class chosen for analysis. Some mathematical
programmers feel that this relationship is the key to improving algorithm and code comparisons. Current
research centers on viewing the problem class as a well-defined population from which “random™ samples of
test problems can be chosen. This approach allows statistical inferences to be drawn about code performance

on problems other than the ones used. Five papers addressed this topic.

3. Experiment Design

We begin this section on experiment design with the following quote from Design of Experiments, A

Realistic Approach [1].

“Unfortunately, there are cases in which the sole purpose of the experiment is to ‘prove’ what the experimenter
already ‘knew’. This type of experiment frequently is conducted so that the “known™ result will occur no matter
whether it should or not. This type of experiment cannot be condoned by persons seeking the truth. On the other
hand, a worse condition may exist where people run experiments fully intending to be honest but being completely
unaware of their incompetency in conducting experiments intelligently. Frequently, experiments are run so that
the effect of the factor of interest is disguised by the effect of another factor not considered. This latter factor is

then ignored or considered unimportant, yet, in the long run, it is the real cause.”

The degree to which researchers controlled the factors affecting the outcome of their experiments will be
investigated next. As we shall see, there is considerable room for improvement in the design of computational
experiments. Indeed, one of our questions asked whether the goals of the experiment were clearly defined.
Only one-third of the papers contained statements of objectives extending beyond general statements about
comparison or evaluation.

We identified three areas that contain factors significantly affecting the outcome: (1) the problems on which
the codes were tested, (2) the computer environment, and (3) the controls with which these two areas were
governed.

As previously mentioned, the essential question involves how much understanding and control of the
important aspects of experiment design were indicated in the papers. For example, we cannot directly
discover how well the computer environment was understood by the experimenter. Nevertheless, we feel that
if a basic component such as name of the compiler was not specified, there is reason to suspect that other
influential variables were not considered when the experiment was designed.

3.1 Test Problems

There has been considerable debate in recent years over whether hand-picked problems (either arising in
practice, or specially constructed) or randomly generated problems should be used in a computational study.
We will not discuss this issue, but it is interesting to note the totals shown in table 3.1, where the breakdown
of hand-picked and generated problems is given for each of the ten areas of mathematical programming
represented in our study. The use of randomly generated problems appears to be more common in certain
areas, such as networks (minimum cost flow and shortest path), than in others, such as constrained
mathematical programs. Random generation is favored when large-scale problems (many variables) are used,
and hand-picked examples otherwise.

Regardless of the types of test problems used, there is a need to provide sufficient information so that the
experiment can be replicated by other researchers and properly evaluated by referees. Thus, when randomly
generated problems are used, an important question is whether the generator is available. There were twenty-
three papers that used randomly generated problems. In twelve of these, the authors developed their own
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Hand-Picked Generated Both
Linear Programs 5 1 |
Networks 0 5 0
Quadratic Programs 0 1 0
Integer Programs 7 2 1
Unconstrained 7 0 0
General Nonlinear Programs 2 2 1
Knapsack 0 0 |
Shortest Path 1 4 1
System of Nonlinear Equations 2 (1] 0
Geometric Programming &3 0 0

generators; in one case, it was developed elsewhere; and in ten other papers the origin of the generator was
not divulged. Although eighteen of the twenty-three discussed the method of generation, only four stated that
the generator was publicly available.

In the case of the thirty-two articles that used hand-picked problems, sixteen of these provided a reference
to the origins of the problems. twenty included a description of each problem, and nineteen provided
references to other descriptions. Twenty-two of the thirty-two mentioned that their test problems were
available to other researchers.

It is well known in many areas of optimization that the density of the coefficient matrix plays an important
role in code performance. Of the twenty-three studies that used test-problem generators, eleven papers
indicated that the density could be regulated, eight indicated that the density could not be regulated, and five
papers did not mention the topic. Although the density of the coefficient matrix for hand-picked problems is
not directly controllable, in only six cases (out of thirty-two) were the densities of test problems provided.

Another important aspect of the experiment design is the number of test problems to be solved, i.e., the
sample size. Table 3.2 displays, as a function of time, the number of papers that used various sample sizes.

Notice the trend to larger samples.

TABLE 3.2. Temporal trend in sample size.

NUMBER OF
PROBLEMS
GREATER
THAN 100 1 1 1 113 1]6
Sl 1 1 2 1{1 |1
21-50 1 1 2 1 1 2
11-20 1 1|2 2
1-10
1 2 1 1 2 2 1 3 2
1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976

YEARS OF PUBLICATION

A related topic involves the blocking of test cases according to size or type, and their subsequent
replication within each category according to analysis of variance principles. Figure 3.1 presents a graph of
the papers employing this concept of experiment design.
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FIGURE 3.1. Number of papers that used the replication-within-category

concept of experiment design.
(Shown as a portion of all papers in our study.)

As the next topic, we chose the questions of how and why the number and the type of problems were
chosen. Somewhat surprisingly, there were twelve papers (out of fifty) that provided a form of justification.
These justifications ranged from lack of availability of any other problems to statistically based arguments
involving sampling theory.

As a final item, we explored the question of whether preprocessing of the test problems (e.g.. data sorting
or scaling, reorganizing the coefficient matrix) had been performed prior to optimization. Of the fifty papers
we surveyed, four indicated that preprocessing had occurred. Two other papers addressed this topic, but did
not explicitly deal with the manner of preprocessing. Since preprocessing can have an influential effect on
experimental results, we believe that future articles should be more explicit in dealing with this issue.

3.2 Computer Environment

Next, we turn to the computer environment and the degree to which it was described. Generally, a
minimum of information about the computer was provided in the papers. For instance, although the word-
length of the computer affects the accuracy of the results and has an impact on the total processing time, only
seven of the fifty papers provided the word-length (available precision) of the computer. An area of recent
interest, the multiprogrammability of the machines was mentioned in five papers. The operating system was
identified in four of the fifty papers, the machine size (core storage) was reported in four cases, and the
compiler was left anonymous in all but seven. Each of these, though unimportant in some cases, may affect
code performance; their omission certainly limits the replicability of the experiment. Incredibly, as many as
seven papers did not name the computer used! We can note that although papers meeting these criteria for
computer-environment informativeness were few, they appeared mainly in the last several years.

The use of standardized timers is an idea proposed by Coleville [B5] as an attempt to improve the
comparability of experimental results when codes and problems are run on different machines. The idea is to
time a “standard” code (in Coleville’s case it was a matrix inversion routine) and use that value to normalize
results across computers. Five of the papers we reviewed employed standardized time: two in unconstrained
optimization, two in general nonlinear programming, and one in geometric programming. The dates of
publication range uniformly from 1968 through 1976.

3.3 Experiment Controls

In considering the experiment controls, we identified those factors that introduce variability in the outcome
of computational experiments. Each paper was evaluated with respect to the manner in which the factors were

controlled.
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The first factor was “computer.” We simply wanted to know if the same computer was used for all test runs.

The results are as follows:

yes 32 na* 0

no 11 cna** 7
* Not applicable.

** Could not ascertain.

The next factor identified was “compiler.” Since the same codes on the same machine will produce different
results with different compilers, we asked whether the same complier was used for each code. The results are:

ves 8 na 0

no 8 cna 34

If the same set of test problems is not run on each code, an uncontrolled parameter (“problem set”) is
introduced which may cause erroneous inferences. It is of less concern when randomly generated problems
are used and the results are reported as the mean or the median of a large number of similar problems. The

results of asking whether the same problems were used on all codes are:

yes 42 na 1
no ) cna 2

It would be interesting to know how often the same programmer was used to develop the codes for

evaluation. However, in most cases, we were unable to answer this question. The results are as follows:

yes 7 na 0
no 15 cna 28

Using different computer languages can produce varying results. In fact, if machine language is used, one
might even say that comparisons with codes containing high level language are inappropriate. The results of
asking whether the same language was used for all codes are:

yes 20 na 0
no (6} cna 24

A factor that may introduce variability in results of computational comparisons is the workload of the
computer when operating in a multiprogrammable environment. Unfortunately, this topic was addressed all
too infrequently. We asked whether an attempt was made to run under the same workload:

yes 2) na 1

no 11553 cna 34

Note that multiprogramming is a recent phenomenon and is not applicable to the older studies; we could not
determine the extent of multiprogramming in most of the more recent studies.

Tolerances (e.g., pivot tolerances and convergence tolerances) were also investigated. It is encouraging to
have discovered that almost 25% of the relevant papers addressed this point. The statistics for using identical
tolerances for each run are:

yes 10 na
no 4 cna 25

Another parameter whose effect is often overlooked is the zero tolerance, i.e., the definition of an e-range
for the value zero. Asking whether the zero tolerance was held constant for all codes on all runs, we

discovered the following results:

yes 9 na 10
no 1 cna 30
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One paper attempted to ascertain the effects of altering the zero tolerance.

Another confounding variable is the use of different starting points within the algorithms. We recognize that
in many codes available today, the algorithm for locating a starting point is built-in. However, if codes with
different initial-solution algorithms are compared, the evaluation becomes complicated by an additional
factor. When we asked whether starting points were the same in each run, we sought answers for all areas of
MP, and if the point was not addressed, we made no assumptions. The results follow:

yes 13 na 2

no 1 cna 34

4. Empirical Results

This section deals with the empirical results of the experiments as they were reported in the reference
articles. We summarize how these results were presented and used, and point out noteworthy instances of
good and bad methodology. Since many of these studies were condensed for publication, especially the
articles appearing in refereed journals, and since we did not have access to the original reports, we were
unable to evaluate thoroughly whether the data justify the conclusions stated. Thus, we could not critique the
experiments with the same degree of understanding as could a conscientious referee. Instead we acted as
investigative reporters.

4.1 Performance Measures

The initial topic considered was the measures of performance used in evaluating algorithm and software
effectiveness. A summary of the most frequently employed measure, central processing times, is provided in
Table 4.1. Sixty-eight percent of the papers (34) used processing times as a performance indicator. Although
the majority of these papers (24/34) reported the processing times for individual problems a sizable portion
(14/34) used the average or the median processing times as an indicator of performance.

TABLE 4.1.  How processing times were reported.

Central Tendency " ioa? Individual Prob- Worst Case Analy-
e Standard Deviation : : J
(mean or median) lems Discussed sis
No 36 47 26 48
Yes 14 & 24 2

Note that many experiments used central processing time without regard for input/output, even though the
input/output portions may be two to three times as time consuming as the optimization elements (see
Himmelblau, [5]). For nineteen of the thirty-four papers, we could not determine whether input/output was
included as part of the reported processing times. On the other hand, thirteen papers mentioned that input/
output was not included. Only two papers provided the computer times required for input/output processing.

There is a potential source of difficulty with using central processing as the sole performance indicator;
there are many other objectives that have a bearing on the usefulness of the technique, for example the
relative amount of storage that is required for each code. But the storage requirements were mentioned in only
seven of the fifty papers. Three of these seven papers considered the number of non-zero elements which were
stored as a criterion for comparison.

An important consideration that is often left aggregated within the measurement of input/output times is
that of preprocessing. As mentioned in Section 3.1, preprocessing refers to computations performed prior to
the “official” start of a program. These computations may constitute a significant percentage of the total. In
the area of networks, for example, the preprocessing (sorting) of arcs by cost coefficients is usually
accomplished during the input stage. Unfortunately, we could not ascertain the extent of preprocessing that
occurred because the input/output specifications were not reported for these experiments. Not one paper fully

described the extent of preprocessing that took place.

972



The number of function evaluations occurring during program execution is another frequently used measure
of performance. Tables 4.2 and 4.3 provide summary information regarding this measure. Nine papers
addressed this issue, primarily in the area of unconstrained optimization. Some researchers are reluctant to
use function evaluations as a sole measure of performance. Thus, three of the nine papers that counted
function evaluations also reported processing time. In four papers, a standard unit of work was defined and
used.

The number of iterations to solve a problem is another measure of performance that is closely aligned with
the previous one, and is relatively independent of the computer used. See Table 4.4 for a summary of how
often this criterion was used.

rmance measure.

TABLE 4.2, Papers that used operation count or number of function evaluations as a per

Number Using Function Evalu-

Subclass Total .
ations
Linear Programs 10 1
Networks S 0
Quadratic Programs 1 0
Integer Programs 10 0
Unconstrained 7 4
Nonlinear Programs 5 1
Knapsack 1 0
Shortest Path 6 1
Nonlinear Equations 2 2
Geometric Programs 3 0

TABLE 4.3.  Methods of reporting function evaluations.

Method Number
Central Tendency 4
Standard Deviation 1
By Problem 7

Worst Case 0

TABLE 4.4.  The number of iterations as a measure of performance.

Central Ten-

| Spread By Problems Worst Case
dency

General LP’s 3 2 7 0
Integer Programs 0 0 8 0
General Networks 2 0 0 0
Quadratic Programs 1 0 1 0
Unconstrained 0 0 2 0

In earlier works, it was thought that the number of pivots would be an invariant and unbiased measure of
performance; a belief that has persevered to the present. Unfortunately, the average time to conduct a pivot
may vary considerably. (See Mulvey [7]) for evidence showing a 17-fold variation in average pivot time for a
single problem. Thus, conclusions drawn about code performance based on results from the single indicator
“number of pivots” are likely to be misleading. The pivot strategy and the scheme for storing the basis have a
profound effect, and should be controlled during a computational experiment.

Numerical accuracy is occasionally considered more important than efficiency (as measured by processing
time, number of function evaluations, or number of iterations). Many users of mathematical programs prefer
an efficient method which is occasionally inaccurate over a relatively inefficient method that provides accurate
answers. Design engineers who solve small-scale nonlinear programming problems often express this
preference. We should note that methods employing integer arithmetic throughout are not influenced by
accuracy considerations, except when computer word size is exceeded, and these methods were excluded.



A variety of definitions of numerical accuracy exists: Himmelblau [5] provides a sample. Since we were
primarily concerned with how many articles addressed numerical accuracy, we did not distinguish among
these definitions. Table 4.5 indicates the percentage of experiments which treated numerical accuracy, by
type of article. In total, numerical accuracy was considered in 14% of the articles. Reference [C5] is
particularly noteworthy for pointing out potential difficulties with setting the zero tolerance in the program.

TABLE 4.5.  Numerical accuracy as a measure of performance.

Accuracy as  Accuracy as  Accuracy as

Related to Related to a Function ~ Formal Er-
CPU or Iter- Conver- of 0 Toler-  ror Analysis
ation gence ances
Applicable Refereed Articles 1 1 0 0
Applicable Reports and Theses 2 0 0 0
Applicable Books and Proceedings 0 1 1 0
Theses and Dissertations 1 0 0 0

Robustness was the next measure of performance considered. We defined robustness as the percentage of
problems solved by each method as related to the total number of problems attempted. Eighteen percent of the
papers considered robustness. Since our definition of robustness depends upon the termination criterion used,
whenever a program ends prematurely it is impossible to estimate how long it would have taken to reach the
“optimal” solution. A variety of suggestions have been made for resolving this problem (see Gill and Murray,
[4)).

In another noteworthy article [A21], robustness was further refined as a measure of performance, and given
the name reliability. A formal definition of reliability was provided, and the algorithms were ranked according
to this criterion.

It is clearly important to understand why a method failed on particular problems. Three out of fifty papers
went into a detailed analysis of this point, whereas twelve out of fifty papers simply counted how many
problems could be solved by each code.

Program set-up time for problems and codes was the final measure of performance addressed. Two papers
in the area of general nonlinear programming attempted to quantify and measure this criterion for competing
techniques.

4.2. Statistical Methods

Statistical methods have been used in analyzing computational experiments. The frequency of use in shown
in Figure 4.1. With statistical sampling, inferences can be made about the performance of the techniques for

NUMBER OF PAPERS
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YEAR OF PUBLICATION

FIGURE 4.1. Use of statistical methods.
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a population of test problems. Of course, the assumptions that such a “statistical” population exists and that
a “random” sampling procedure can be developed must be made. These assumptions might not be generally
appropriate. As mentioned earlier, the current lively debate over whether computational experiments should
be conducted with carefully selected real-world problems or with randomly generated problems illustrates the
lack of a clear resolution for this dilemma. In Table 4.6, we indicate the statistical methods used within the
fifty experiments. As shown, regression analysis was the statistical method most frequently employed. It was
usually used to estimate a function relating computational difficulty to initial problem parameters.

TABLE 4.6.  Survey of statistical methods employed.

Hypoth- va(r;s- Factor- et Signi- ;aorr;—.
Category is sto ANOVA ial ficance ; Other
54 "~ Analy- : Squares metric
lests S Design Tests T

S18 ests
Refereed Papers 0 3 0 1 0 1 0 3
Chapters of Books and Proceedings 1 2 0 0 1 0 0 1
Working Papers 0 1 1 0 0 0 0 1
Theses and Dissertations 0 0 1 1 0 1 1 0

Total 1 6 2 2 | 2 1 5

4.3 Mathematical Checks

Without indication to the contrary, researchers and journal referees generally have faith that a code has
“solved™ a problem when it terminates. Integer programming is an exception to this rule. As shown in Table
4.7, only 6% of the papers provided proof of optimality, and 34% provided the final objective-function values
for the problems solved. Hence, it is difficult to know whether or not optimality was reached. Many articles
failed to report the final values of the objective function or to say where these values could be obtained. This
omission seriously undermines the conclusions drawn, since replication of the results is impossible. In
addition, the data may not be compatible because different codes may terminate at different solution values.
The omission of the degree of satisfaction obtained for the Kuhn-Tucker conditions further degrades the
results. The paper of Crowder et al. [2] is an attempt to correct this problem by requiring certain minimal
standards for publication. These authors believe that the values of the objective function and the Kuhn-

Tucker “residuals™ should be included in the published article or in a supplementary unabridged report.

TaBLE 4.7.  Data at termination.

Proof of Conditions Objective Function
Provided Values
no 47 55
yes 3 17

4.4 Reporting of Empirical Evidence
Empirical evidence was reported primarily in tables of summary data. These talbes take many forms, of

course. Table 4.8 summarizes the frequencies of the most popular methods. There seems to be a trend to
include more technical information in the published articles.

TABLE 4.8.  Presentation of empirical evidence.

Value of Ob- Density of

Summary jective Func- Arrays as
e By Proble . .
Statistics y roblem - Sion vs. Iter-  Function of Other
ation Count Iteration
Total 20 34 6 0 11




Graphics are another means for reporting empirical evidence. Again, a variety of forms are included. Table
4.9 shows the incidence of various graphs. In five instances, there was very little empirical evidence

provided; a general discussion of coding enhancements replaced the usual evaluation discussion.

TaBLE 4.9.  Types of graphs used.

Value of O.F. Size of Prob- # Function -
h . ; Problem To-
vs. Time or It- lem vs. Time  Evaluations vs. ologies
eration or lteration Time pologre:
Total 4 5 4 B

4.5. Interpretation of Results

In this section we analyze how and why the researchers used the empirical evidence provided in their
papers.

Understanding and predicting code performance were fundamental concerns, and twenty-four papers stated
or implied this objective for their experiment. In seven papers, the domain of applicability for each code was
established by means of the computational experiments. Six papers indicated possible improvements in the
software, whereas forty-two papers used the empirical evidence to demonstrate the relative rankings of the
techniques tested; however, the results were compared with previous work in only eleven cases. Generally the
ranking scheme was not formally defined, but in six cases a weighted average was employed.

The most glaring weakness, in our opinion, was the lack of concise statements indicating the purpose of the
computational experiment and the limitations of the study. Only 30% of the papers provided this. Five papers
gave a reference to a more comprehensive report of the experiment.

5. Suggestions for Future Work

The evidence shows that the development of a methodology for testing and evaluating mathematical software
is at any early stage, and the field of mathematical programming is no exception. The recent creation of a
journal (ACM’s Transactions on Mathematical Software) to disseminate information about mathematical
software indicates an increasing interest in this subject. Groups have been formed —one in statistics (The
Committee on Evaluation of Statistical Program Packages (see Francis [3])) and one in Mathematical
Programming (COAL, [6]) — concerning themselves with computational aspects of their respective disciplines.
Other such groups will no doubt arise.

This paper shows that a consensus for conducting computational experiments has not been reached,
although patterns can be detected within certain areas of mathematical programs. On the whole, the more
recent experiments appear improved in methodology only slightly over their predecessors. The 1953 paper
[A1] of Hoffman was one of the most thorough evaluations.

We believe that fundamental research in the area of computer-algorithm performance is long overdue. We
further believe that developmental work in the area of computational evaluation is greatly needed. There are
several obvious needs: (1) compact, portable problem generators which build test problems possessing
controllable realistic structure; (2) a modeling language for generating problems that takes into account the
inherent structure of a class of problems; (3) ideas for reducing the computational burden of testing large-
scale examples; (4) suitable performance indicators; and (5) an aware group of researchers. This paper is
concerned with point (5), but the others are also important and should be subjects for future work.
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Appendix B: The Questionnaire

————— ]
————— (3]
2. The Elements of the Experiment - ———— [5]
Algorithms
2.1.1  Were different algorithms compared? - ———— [20]
2.1.2  Was method of presentation the same for all algorithms? - ———— [21]
2.1.3  Methods of presentation:
2.1.3.1  Referenced by name only? . ————— [22]
2.1.3.2  Reference to other descriptions in literature? - ———— [23]
2.1.3.3  Extensive discussion?  —— [24]
2.1.3.4  Brief discussion?  ————— [25]
2.1.3.5 Extensive flowchart? [26]
2.1.3.6  Brief flowchart? [27]
2.1.3.7  Mathematical algorithm description? - ———— [28]
Problem Class
211 Method of description:
2.2.1.1 Bynameonly? - [35]

579



2.3

3.1

2.2.1.2 By mathematical formonlyz . —— [36]
2.2.2  Application areas discussed? - [37]
2.3.3  Any discussion of differences in problem class across technique? - - - — - [38]
Software
2.3.1  Was method of presentation same for all codes? - ———— [45]
2.3.2  Methods used:
2.3.2.1  Referenced by name only? - ———— [46]
2.3.2.2  Reference to other descriptions in literature? - ———— [47]
2.3.2.3  Extensive discussion?  — - [48]
2.3.2.4  Brief discussion? [49]
2.3.2.5 Extensive flowchart? [50]
2.3.2.6  Brief flowchartz [51]
2.3.2.7  Were listings included> [52]
2.3.3  Were data structures discussed? - [55]
2.3.4  Were storage requirements given?
2.3.4.1 Forcode?  ———— [56]
2.3.4.2  For working storage? ~ ————— [57]
2.3.4.3  For offline storage?  ——— [58]
2.3.4.4 Totalonly>  — [59]
2.3.5  Were any codes commercially producedz - ———— [60]
2.3.6  Were all codes commercially produced? - ———— [61]
2.3.7  Was programming language unmentioned for any of the codes? - ———— [62]
2.3.8  What languages were used?
2.3.8.1 FORTRAN?  ————— [63]
253 82BN NATCOL AN [64]
2383 PpLAp  ————— [65]
2.3.8.4  Machine level? [66]
2.3.8.5  Any codes with mixtures? ~ ———— [67]
2.3.9  Any reference to more documentation of codes? - ———— [68]
2.3.10 Were codes liberally annotated with comments? - ———— [69]
2.3.11 Was code portability mentioned? - ———— [70]
2.3.12  Was code portability tested?z [71]
2.3.13 Was ease of use of codes discussedz [72]
2.3.14 Was availability of codes mentioned? - ———— [73]
2.3.14.1 Were any codes proprietary? - ———— [74]
2.3.15 Was output of codes mentioned? — ————— [75]
2.3.15.1 Sample output includes? [76]
2.3.16  Any discussion of why tolerances were chosen? - [77]
3. Experimental Design - ———— [5]
The Problems
3.1.1  Were randomly generated problems used2 [20]
3.1.2  Did authors develop their own generators? . __ [21]
3.1.3  Was generator availability mentionedz [22]
3.1.4  Was method of generation discussedz ~— _____ [23]
3.1.5  Was distribution of problem parameters mentioned? [24]
3.1.6  Was density under control of the generatorz [25]
3.1.7  Were the ranges for the parameters given? ~ _____ [26]
3.1.8  Was the total number of problems run mentioned explicitly? - - - _ [27]
3.1.9  Total number of problems run:
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352

3.3

w w e w

DU Lo WO

3.1.10

.13
.14
ol 53

.16

A7
.18
.19
.20

3.2.21

3.1.9.1  In the range 1-107
3.1.9.2  In the range 11-207
3.1.9.3  In the range 21-507
3.1.9.4  In the range 51-1007

3.1.9.5  Greater than 1007

Was there a breakdown by size or type with replications?
Number of sizes or types:

3.1.11.1  In the range 1-107

3.1.11.2  In the range 11-207

3.1.11.3 In the range 21-507

3.1.11.4  In the range 51-1007

3.1.11.5 Greater than 1007

Number of replications:

3.1.12.1 In the range 3-57

3.1.12.2  In the range 5-107

3.1.12.3  Greater than 107

Was there any discussion of why the number of problems was chosen?
Were real world (RW) problems used?

Was there a discussion of origins of RW problems?
Was there a description of each RW problem?
3.1.16.1 Was size given for each?

3.1.16.2  Was density mentioned for each?
3.1.16.3  Was the range of parameters given?
Was there a reference to other descriptions?

Were any of the RW problems specially tailored?
Were the RW problems mentioned to be available?
Number of RW problems used:

3.1.20.1 In the range 1-107

3.1.20.2 In the range 11-207

3.1.20.3  In the range 21-507

3.1.20.4  In the range 51-1007

3.1.20.5 Greater than 1007

Was any preprocessing performed on the problems?

The Computer Environment

38281
35288l
D282
3R25103
3.2.1.4
35250055
S22 60
B
3.2.3

Characteristics of the machine:

Was the name listed?

Was core storage available reported?
Was the operating system mentioned?
Was the compiler named?
Multi-programmability mentioned?
Was word length given?

Was the run time of day considered?
Were standardized times used?

Experiment Controls

3:3.1
SO

Were the goals of the experiment clearly defined?
Was same computer used for all runs?

581



4.1

S:003
3.3.4
3.3.5
31380
SASN
3.3.8
S350
3.3.10
383511
3.3.12

3.3.13

Was same compiler used for all codes?

Were the same problems used for all codes?

Was same language used for all codes?

Were codes programmed by the same person?

Was an attempt made to run under same workload?
Were same tolerances used for each problem?
Was the effect of zero tolerances considered?

Were starting points the same for each run?

Were same termination criteria used for each run?
Termination criteria used:

3.3.12.1 Optimum achieved?

3.3.12.2  Closeness to formal bound?

3.3.12.3 Lack of reduction in objective function?
3.3.12.4 Number of iterations exceeded?
3.3.12.5 Computer time exceeded?

Were all problems generated on same machine?

4. Empirical Results

Measures of Performance

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

Processing times:
4.1.1.1  Method of Reporting: Central tendency?
4.1.1.2  Method of Reporting: Spread?
4.1.1.3  Method of Reporting: By problem?
4.1.1.4  Method of Reporting: Worst case?
4.1.1.5 Were I/O time indicated?
4.1.1.6  Was total processing time reported with no segregation of
1/0?
4.1.1.7  Was preprocessing time considered?
Functional evaluations (operations count):
4.1.2.1  Any definition?
4.1.2.1.1 Standard units of work?
4.1.2.1.2 Horner units?
4.1.2.1.3 Comparable function evaluators?
4.1.2.2  Method of Reporting: Central tendency?
4.1.2.3  Method of Reporting: Spread?
4.1.2.4  Method of Reporting: By problem?
4.1.2.5  Method of Reporting: Worst case?
Number of iterations:
4.1.3.1  Method of Reporting: Central tendency?
4.1.3.2  Method of Reporting: Spread?
4.1.3.3  Method of Reporting: By problem?
4.1.3.4  Method of Reporting: Worst case?
Was numerical accuracy considered?
4.1.4.1  As a function of CPU time or number of iterations?
4.1.4.2  As a function of convergence tolerances?
4.1.4.3  As a function of zero tolerances?
4.1.4.4  Any formal error analysis?
Was robustness considered?
4.1.5.1  Discussion of why problems were not solved?
4.1.5.2  Detailed formal analysis of robustness?
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4.2

4.3

4.4

4.1.6

4.1.7

4.1.8

4.1.5.3 Number of problems solved (only)?
Was reliability analyzed?

4.1.6.1 Definition given?

4.1.6.2  Any empirical evidence shown?
Were storage requirements considered?
4.1.7.1 Number of non-zero elements?

Was programmer set-up time for problems and codes counted?

Any Statistical Methods Used?

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

Hypothesis testing?
Regression analysis?
Analysis of variance?
Full factorial design?
Latin squares?
Significance testing?
Non-parametric sign test?

Other

Mathematical Checks

4.3.1
4.3.2

Were the K-T conditions verified?

Were the objective function values provided?

Methods of Presenting Empirical Evidence

4.4.1

4.4.2

4.4.3

Tables

4.4.1.1 Summary statistics?

4.4.1.2 By problem?

4.4.1.3  Value of objective function versus iteration count?
4.4.1.4  Density of arrays as a function of iteration count?
4.4.1.5  Other

Graphics

4.4.2.1  Value of the objective function vs. time or iteration?
4.4.2.2.  Size of problem vs. time or iteration?

4.4.2.3  Function evaluation vs. time or iteration?

4.4.2.4  Problem topologies shown?

Discussion only

Interpretation of Results

4.5.1

L [
(2 B2 BN |
=W N

Understanding and predicting code performance
4.5.1.1  As a function of problem parameters?
4.5.1.2  Matching algorithms (codes) with types of problems?
Determining the domain of applicability for each code?
Indicating possible improvements in codes?
Discussing which method works best? (Evaluation)
4.5.4.1  Were these results compared with other previous experiments?
4.5.4.2  Types of rating schemes:

4.5.4.2.1 Domination?

4.5.4.2.2 Weighted averaging?

4.5.4.2.3 Totally arbitrary?

4.5.4.2.4 Statistically superior?
Extrapolating to wider classes of problems?
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1 Formal (mathematical)?
5.2 Informal (speculation)?
(No basis)

4.6 Were the limitations of the study indicated?
4.7 Was there a reference to a more comprehensive report of this experiment?
4.8 Discussion of whether the goals of the experiment were reached?
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