
JOURNAL OF RESEARCH of the Notional Burea u of Standards 
Volume 83, No.6, November- December 

A Critical Review of Comparisons of Mathematical 
Programming Algorithms and Software (1953- 1977) 

Richard H. F. Jackson* 

Center for Applied Mathematics, National Bureau of Standards, Washington, D. C. 20234 

and 

John M. Mulvey* 

Graduate School of Business Administration, Harvard University, Boston, Massachusetts 02163 

June 27, 1978 

Since the introduc tion of general-purpose computers during the early 1950's, competin g techniques of 

mathe mati cal programming have been developed, a nalyzed empiricall y, a nd compared. In thi s paper we survey 

fifty artic les (spa nning the periocl1953-1977) which report the computational testingof mathemati ca l programming 

a lgori thms. Our intention is to document the performa nce measures which we re used, the stand ards which we re 

mainta ined, and the forms in whi ch the results were reported for these experime nt s. Tre nds in methodology are 

not ed, and suggestions for improving the curre nt stat e of affa irs are offered. 

Keywords: Code comparison; compari son of mathemati cal programming software; eva luation; testing. 

1. Introduction 

Computational experiments with mathematical programming techni q ues have taken place throughout the 
past twenty-five years . In 1953, for instance, Hoffm an et a!. [AI]' compared the nume ri cal effi c iency of the 
simplex method , the fictitious play method of G. Brown, and the relaxa ti on method of T. S. Motzkin for 
solving several symmetric matrix games. Since 1968, an inc reasing number of experimental studies have 
been publis hed in scholarly journals . Unfortuna tely, the methodology for conducting such computational 
experiment s has not rece ived systematic study, and no set of genera ll y accepted guid e lines has been 

avai lable. 
The purpose of this paper is to survey a substa ntial sample of the publi shed a rticles and work ing papers in 

this field. The fifty papers chosen for the study are listed in Appendix A. Our intention is to documen t the 
methods employed in conducting these experiments, including the control s mainta ined , the pe tformance 
measures used, the extent of a priori experiment design , and the forms in which the results were re ported. 

In selecting articles, we attempted to locate as man y bona fid e computational experiment s as possib le. We 
rejected studies presenting " new" algorithms, even when extensive computational testing was provid ed. We 
wished to restrict attention to papers whose primary contribution was presentation of the e mpiri cal evidence. 
On the basis of its abstract, title, and/or introduction, each of the selected pape rs indeed qua lified as the 
result of computational experiments. A majority of them evaluate mathemati ca l programming a lgo rithms; 
some evaluate tactical choices within an algorithm; others evaluate the computa tiona l effi c ienc ies of 
mathematical programming software. All of them prese nt emp irical result s as evidence of su pe rior or inferior 
performance, a feature distinguishing the m from publications giving onl y theore tical bounds or estima tes for 
computational effort. 

The papers that were de libe ra te ly left out of this survey a re numerous; no doubt thi s is true of unintentional 
omissions as well. Studies that were clearl y inferior were excluded; we did not want to single out inadequate 
efforts since we felt these were best left undi sturbed. A number of works were not included because they were 

• The au thors a re members of the Committee on Algorithms (COAL) of th e Mathematica l Programming Society. COAL is concemed with computational aspects of mathematical 
programming . A re lated paper is "Cuidelines for Report ing Computational Experiments in Mathematical Programming: ' which may be reques ted from John M. Mul vey. John M. 
Mul vey's present address: School of Engineering/Applied Sc ience. Princeton University. Princeton. New Jersey 08540. 

I Figures in bruc kets indicate li teralUre references at the end of th is paper . 

563 



not accessible to us or because we were un aware of the m a t the time of the survey. Such papers might well be 

included in a revi sion of this survey. 
As indica ted in tabl e 1.1, most of the major areas of mathematical programming are represen ted, as are the 

journals which most frequently publish results about mathe matical programming. There are ten articles each 
on linear programs and on integer programs. The categories of unconstrained optimization, ne twork , nonlinear 

programs, and shortest paths have five to seven articles apiece. Quadratic programs, knapsack problems, 
systems of nonlinear equations and geometric programs are represe nted by one to three articles each. Twenty­

six of the fift y articles appeared in refereed journals, whereas eleven are chapters of books or were prese nted 

in proceed ings of conferences. El even papers are mainly recent technical re ports, many of which have been 
subsequently submitted for publication. Two theses were included. 

TABLE 1.1. Articles selected/or the critical review. 

Areas of \1P Represented 

Linear Programs 

I nt eger Programs 

Unco nstrai ned 

Shortest Pat hs 
Nonlinear Programs 

Ne tworks (Min-Cost Flow) 

Geometric Programs 

Systems of No nlinear Equations 

Quadratic Programs 

Knapsack Probl ems 

Journal s Repre se nt ed 

Mathematical Program ming 
Managemelll Science 

Communications 0/ the ACM 
Operations Research 

lournal oJ the ACM 
SIAM lournal 0/ Numerical Analysis 

l ournal oJthe SIAM 
ACM Transactions on Mathematical Software 
OPSEARCH 
Australian Computer l ournal 

CompU/.er lournal 

Methods of Publication 

Publ ished Journals 

Chapters in Books & Proceed ings of Conferences 

Tec hnica l Reports* 

Theses and Dissertations 

* Many have been subsequentl y submitted for publication. 

Number 

10 

10 
7 

6 
:; 

5 
3 
2 

t 

50 

Number 

8 
4 
3 
2 

2 

2 

1 

1 

26 

Number 

26 
11 

II 
2 

50 

Figure 1.1 prese nts a histogram of the selected articles as a function of publication date. Corresponding to 
the three commonly recognized "generations" of co mputers, we have identified three fairl y distinct generations 
of computational expe rime nts. We we re able to locate only one article that appeared prior to the introduc tion 

of programming languages (FORTRAN was officially introducecl in 1959) - the paper of Hoffman e t al. [AI], 

whic h appeared in the first generation. Seven papers were found with publication dates between 1960 and 
1966 -corresponding to the second generation. The majority (42) of the fifty papers appeared after the 

introduction of third-generation co mpute rs, such as IBM's 360 series, in 1968. Note that there seems to be an 
upward tre nd in the number of papers per year. 

564 

-; 
I 

~ 



iJ 

' .. 
I 

W 

~ 

I 

9 
DISSERTATIONS 

8 
JOURNALS 

en 
a: 

6 TECHNICAL REPORTS w 
<>-... 
<>- PROCEEDINGS 
~ 

0 

a: 
w 

'" ~ 
:::> 
z 

1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 

PEAK 1 PEAK 3 PEAK 2 

YEAR OF PU8l1CATION 

F IGU R E 1.1 . D.,{'ribw.ion oI lhe sampLe over lime . 

Thi s survey is arranged according to the following topi cs: e leme nts of the expe riment; experime nt des ign; 

and e mpiri ca l result s . Section 2 addresses informa tion pe rtaining to the eleme nt s of the experime nt, i. e., the 
algo rithms a nd codes whi ch were employed. We re the al gorithms prese nted in unambi guous detail or we re 

they refe rred to by name on ly? Co uld the compute r software be re produced by othe r researc hers? We re 
desc riptions of the information structures provided? 

The expe riment designs are re viewed in section 3 . A ca re ful expe riment design, in wh ic h goals and the 

plan for the ir achie ve me nt are clearly laid out , is the keystone of expe rime ntal an a lysis. We shall see that one 

of the princ iples of expe rime ntal in vestigat ion , viz , re plication , is woe fully neglected . 
Sec tion 4 tak es up the issue of how the results of the expe rime nts we re prese nted. For instance , the 

performance measures that were used a re noted . Incidences of e xtrapolation and speculation are also 
indentified. Section 5 offe rs suggestion s for improving the s tate of computational expe rime ntation , a topic 

ta ke n up more full y in Crowde r, e t a1. [21. References for the surveyed pape rs are given in appe ndix A, a nd 
appe ndix B conta ins the form used in e valuating these papers. A copy of the unabridged data (s uitably 
disgui sed) is ava il ab le to interested resea rche rs. 

2. The Elements of the Experiment 

In thi s section , we are concerned with the amount of detail with which the elements of the computational 

experiment s were described. We defin e these elements to include the algorithms the mselves and the related 
computer software . Howeve r, we decline involve me nt in the debate over where an algorithm e nds and its 

computer implementation begins. Thi s re view uncovered many instances of confusion over thi s di stin ction , 
and two papers [AI , Cll] are noteworthy in their discussions of the matte r. It is interestin g to note that [AI] 
is the earl ie st paper in our samp le and [Cll] is one of the latest. In our survey, if an idea was prese nted as 

part of the solution technique or methodology , it was identified as part of the algorithm. On the othe r ha nd , if 
the idea appeared expli c itl y in the code and was prese nt ed in tha t light, we included it in our a nal ysis of the 

software. Thi s d ic hotom y may not appl y ge ne rall y, but it proved workable for our purposes. 

2.1 Algorithms 

Ce rtainl y the re are man y ways to describe an a lgo rithm , and as expec ted , we e ncounte red various levels of 
detail in prese ntation. Most desc ription s fall into one of the followin g catego ries: (1) flowc ha rt ; (2) prima ril y 

mathematic a l; (3) verbal ; or (4) re fe rence to other doc ume ntation. Our concern , however, was whe the r e nough 
informa ti on wa s provided so that a read er could und erstand all of the algorithms to the exte nt that he could 

565 



repeat the experiment , given sufficient resources. (Repeatabilit y he re assumes all other aspects of the 
experiment we re sufficiently documented.) Thus, when a paper desc ribed one algorithm in detail and 
refe renced the remaining algorithms, we assumed that sufficient detail was provided. When, on the other 
hand, an y algorithm was referred to by name only, we assumed that sufficie nt detail was lacking. Figure 2.1 
indicates our estimate of the number of papers providing suffic ient detail for a de termined reader to be able to 
understand and repeat the experiment. 

1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 

YEAR OF PUBLICATION 

FIGURE 2 .1. Number of papers I.hat provided "suffu:ient" discussion of the algorithm. 
(Shown as a portion of aJ l papers in our s tudy.) 

2.2 Software 

Since the papers are reports of computational experiments, we feel that it is crucial for the codes employed 
to be described adequately. Table 2.1 shows the frequency with which different methods of presentation were 
used. The numbers of papers sum to 54 since some papers used more than one method. 

TABLE 2. 1. Frequencies of metfwds of software presentation . 

Method 

Referred to by name only 

Refere nced to other descripti ons 

Extensive disc ussion 

Brief discuss ion 

Extensive flow chart 

Brief flow chart 

Li stings inc luded 

Number of papers 

29 
13 
2 
7 

In many cases, for example codes that solve large-scale transportation problems, the computer implemen­
tation has a critical effect on the outcome of the experiments since the empirical results are highly sensitive to 
the method of implementation . Indications of data structures within the codes is one test of software discussion 
comple teness. Figure 2.2 depicts the number of papers that mentioned this topic, which is clearly considered 
more important in some areas of mathematical programming than in others . A related subject is the total 
storage requirements of the computer software . Five papers gave the amount of storage required; eight papers 
mentioned the amount of working storage, and one paper referred to offline) storage. 

566 



I 
I 

" I 
V 
I 
~ 

t 

l 

10 

If> a: 
it 6 
f 
~ 

0 

ffi 
'" :E 
:::> 
z 

_ ._-

lP NElWORKS UP I P UNCON- GENERAL KNAPSACK SHORTEST SYSTEM GEOMETRIC 
STRAINED LP PATH OF PROGRAMIMi 

NONUNEAR 
EQUATIONS 

FIGURE 2.2. Number of papers lluLt included a discussion of data structures , 
displayed by areas of rnal./wmatical programming. 

As another indication of the lack of attention paid to the software elements, we note that just one paper 
presented the time required for input/output. In the folklore of computational experimentation, it is generally 
assumed that problems are solved without us ing external (offline) memory; however, we could not determine 
the extent to which this tradition was follow ed. Further evidence of the lack of attention is provided by th e fact 
that in twenty-eight papers the computer language for at least one of the codes used could not be determined. 
(Of the twenty-nine papers that mentioned language for at least one of the codes, 79% used FORTRAN , 14% 
used machine language, and 7% used ALGOL.) 

Other important topics regarding the computer software are portability, ease of use, and availabil ity. One 
paper [B7] discussed the ease of use of the software used , and is noteworth y in its attempt to quantify this 
subjective measure. Two papers advanced portability as a performance indicator; one of these tested it. 
Availability of the software was mentioned in nine papers . 

Finally, we note the number of papers discussing tolerance settings, since tolerance choice is another 
factor that can affect the empirical results. Ten papers addressed this topic . Figure 2.3 presents a hi stogram 
over time of these papers as a portion of all relevant papers. Techniques employing integer arithmetic, such 
as shortest paths and minimum cost-flow networks, are not affected by tolerance settings and were omitted. 

'" "" w ... 
c 
: 4 
C> 

"" w 
CD 
:E 
:::> 
z 

1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 

YEAR OF PUBLICATION 

FIGURE 2.3. Number of papers tluLt discussed tolerance settings. 

567 



2.3 Problem Class 

We exa mine next how each paper characterized the class of problems to which it re ferred. In most cases 
(80%), the problem class was referred to by ge neric name only (e.g., integer programming probleins), or by a 
blief mathematical definition. The remai ning 20% incluoed a more complete discussion. In addition, e ight of 

the papers discussed appropriate areas of application for using the tec hnique. 
An a rea of importance in experimental design is the s tati stical relationship between proble m class (the 

population) and specific re presentatives (the sample) of that class chosen for analysis . Some mathematical 
programmers feel that thi s relationship is the key to improving algorithm ann code co mparisons. CUITen t 

research ce nters on viewing the problem class as a well-defined population from which " random" samples of 

test problems can be chosen. Thi s approach allows statistical inferences to be drawn about code pe lformance 
on problems othe r than the ones used. Five papers addressed this topic. 

3. Experiment Design 

We begin thi s section on ex pe rime nt design with the foll owing quote from Design uf Expe rime nt s, A 

Reali stic Approach [L]. 

"Unfortunately, there are cases in whi ch the so le purpose of the experiment is to ' prove' wha t the ex perim en ter 

already 'k new'. Thi s type of experiment frequently is conducted so thaI the 'k nown' result wi ll occur no matter 

whethe r il should or not. Thi s type of expe rimenl ca nnot be condoned by persons seek ing Ihe truth. On the other 

hand , a worse co ndition may ex isl whe re people run expe rime nt s full y int end ing to be honest but be ing cOIllple tf' ly 

unaware of their incompetency in conductin g experiments intelligentl y. Frequently, experiment s are run so that 

the effecl of the factor of int erest is di sgu ised by Ihe effecl of a not he r fac tor not co nside red. Thi s latt er fac tor is 

the n ignored or considered unimportant, yet, in the long rUIl , it is the real calise." 

The degree to which researchers controlled the fac tors affec ting the outcome of the ir expe riments will be 

investigated next. As we shall see, there is considerable room for improve men t in the des ign of computational 
experimen ts. Indeed, one of our questions asked whether the goals of the experiment were clearly defin ed. 

Only one-third of the pape rs conta ined stateme nts of objectives ex tendin g beyond general state men ts about 

co mpariso n or evaluation. 
We identified three areas tha t contain factors sign ificantl y affectin g the outcome: (1) the proble ms on which 

the codes were tested, (2) the computer environme nt, and (3) the co ntrols with which these two areas were 
governed. 

As prev iously mentioned, the esse ntial question involves how much und erstanding and control of the 

important aspects of expe rimen t design were indica ted in the papers. For exa mpl e, we cannot directl y 
di scove r how well the computer environment was und erstood by the experimente r. Neve rthel ess, we feel tha t 
if a basic component such as name of the compil e r was not specified , there is reason to suspect that other 
influential variables were not considered when the ex pe riment was des igned. 

3.1 Test Problems 

There has been considerable de bate in recent years over whethe r hand-picked probl ems (either aris in g in 

practice, or spec ially co nstructed) or randoml y generated problems should be used in a computational s tudy. 

We will not discuss thi s issue, but it is inte restin g to note the totals shown in tabl e 3.1, where th e breakdown 
of hand-pic ked and generated problems is given for each of the te n areas of mathemati cal programming 

represen ted in our s tudy. The use of randomly gene rated problems appears to be more common in certain 
areas, such as network s (minimum cost flow and s hortest pa th), than in others, such as constra ined 

mathematical programs. Random generation is favored when large-scale problems (many variables) a re used , 
and hand-picked examples otherwise. 

Regardless of the types of test problems used , there is a need to provide suffic ient informatio n so that the 

experiment can be replicated by other researchers and prope rly evaluated by referees. Thus, when randomly 
gene rated problems are used , an importa nt question is whether the ge ne rator is ava il able. There were twenty­
three papers that used randomly gene rated problems. In twelve of these, the authors developed the ir own 

568 

J 



I 
:; 

TABLE 3. I. .'VLUn.ber of limes haruf-picked and randomly generated problems were used . 

Hand-Pic ked Ge ne ral ed BOlh 

Li near Progra lll s 5 4 

Network s 0 5 o 
Quadral ic Prugrams 0 o 
In leger Progra ms 7 2 

Unconstrai ned 7 0 o 
Ge nera l Non linear Programs 2 2 

Knapsac k 0 0 

Shortesl Pal h 4 

System of .'<on li near Equat ions 2 0 o 
Geomet ri c Programm ing 3 0 o 

gene rators; in one case, it wa s deve loped e lse whe re ; a nd in ten othe r pape rs the orig in of t.he gene ra to r was 

not divulged . Although e ightee n of the twe nty-three di sc ussed the method of genera tion, only four s tated that 

the ge nerator was public ly avai lable. 
In the ease of the thirt y-two a rtic les that used hand-p ic ked problems, s ixtee n of these provided a re fe rence 

to the origin s of the prob lems, twenty inc lu ded a desc ription of eac h problem, and nine teen provid ed 

references to uthe r desc riptions. Twe nty-two of the thirt y- two me nt ioned that t. he ir test probl ems were 

ava il ab le to othe r resea rche rs. 

It is we ll known in man y areas of opt imization tha t the d ensi ty of the coeffi c ie nt matrix pl ays a n i~portant 

role in code performance . Of the twenty- three stud ies that used test-probl e m generators, eleven papers 

indica ted tha t the de nsity could be regul ated, e ight indicated that the d ens ity could not be regulated, and five 

pape rs d id not mention the topic . Although the de nsity of the coeffi c ient ma trix for ha nd-pic ked proble ms is 

nut direc tl y controll able, in onl y s ix ca ses (out of thirty- two) were the de ns ities of test prob lems provided . 

A not he r important aspec t of the expe ri me nt design is the nu mbe r of test. problems to be so lved , i. e . , the 

sample s ize . Table 3.2 di splays, as a function of time, the num ber of pape rs tha t used various samp le s izes. 

Notice the tre nd to larger samp les. 

NUHBER OF 
PROBLEHS 

GREATER 
THAN 100 

51-100 

21-50 

11-20 

1-10 

1 

TABLE 3.2. Temporal trend in sample size . 

1 

1 

1 2 1 1 

1 1 1 3 

1 1 2 1 1 

2 1 1 

1 1 2 2 

2 2 1 3 2 

6 

1 

2 

1954 1956 1958 1960 19 62 1964 1966 1968 1970 1972 1974 1976 

YEARS OF PUBLICATION 

A "("e lated t.opi c involves the b loc king of test cases according to sIze or type, and their subseq uent 

repl ica tion within each category according to analysis of variance princ iples . Figure 3. 1 presents a graph of 

the pape rs e mployin g thi s conce pt of expe riment des ign . 

569 



9 

en 
II: ... ... 
'" ... 

5 ... 
C 

II: 4 ... .. 
~ 3 
~ 
z 

2 

1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 

YEAR OF PUBLICATION 

FIGURE 3.1. Number of papers toot used 1M replication-within-category 
concept of experiment design. 

(Shown as a por1ion of al l papers in our st udy.) 

As the next topic , we chose the questions of how and why the number and the type of problems were 

chose n. Somewhat surprisingly, there were twelve papers (out of fifty) that provided a form of justification. 
These justifications ranged from lack of availability of any other problems to statistically based arguments 

involving sampling theory . 

As a fin al ite m, we explored the question of whe ther preprocessing of the test problems (e.g., data sorting 
or scaling, reorganizing the coeffic ient matrix) had been performed prior to optimization. Of the fifty papers 
we surveyed, four indicated that preprocessing had occurred. Two other papers addressed this topic , but did 

not explicitl y deal with the manner of preprocessing. Since preprocessing can have an influe ntial effect on 
expe rimental results, we believe that future articles should be more explic it in dealing with this issue . 

3.2 Computer Environment 

Next, we tum to the computer e nvironme nt and the degree to which it was described. Gene rally, a 
minimum of informa tion about the co mputer was provided in the papers. For instance, although the word­

length of the computer affec ts the accuracy of the results and has an impact on the total processing time, only 

seve n of the fifty papers provided the word-length (available precision) of the computer. An area of recent 

interest, the multi programmability of the machines was mentioned in five pape rs. The operating system was 
ide ntified in four of the fifty papers, the machine size (core storage) was reported in four cases, and the 

co mpile r was left anon ymous in all but seven. Each of these, though unimportant in some cases, may affect 

code performance; the ir omission certainly limits the replicability of the experime nt. Incredibly, as many as 
seven papers did not name the computer used! We can note that although papers meeting these criteria for 

computer-e nvironme nt informativeness were few, they appeared mainly in the last several years. 
The use of standardized timers is an idea proposed by Coleville [BS] as an attempt to improve the 

comparability of experime ntal results when codes and problems are mn on different machines. The idea is to 
time a "standard" code (in Coleville's case it was a matrix inversion routine) and use that value to normalize 
results across computers. Five of the papers we rev iewed employed standardized time: two in unconstrained 

optimization , two in ge neral nonlinear programming, a nd one in geometric programming. The dates of 

publication range uniformly from 1968 through 1976. 

3.3 Experiment Controls 

In co nsidering the experiment controls, we iden tified those fac tors that introduce variability in the outcome 

of computa tional experime nts. Each paper was evaluated with respect to the manner in which the factors were 

con trolled. 

570 

,) 
! 

I 
J 

(' 

I 

I 



? 

The first factor was "compute r. " We simpl y wanted to know if the same computer was used for all test runs. 

The results are as follows: 

.. Nol applieable . 
•• Could not ascertain. 

yes 
no 

32 
11 

na* 

cna** 
o 
7 

I The next factor identified was "compiler." Since the same codes on the same machine will prod uce different 

I results with different compil ers, we asked whether the same complier was used for each code. The result s are: 
t 

yes 
no 

8 
8 

na 
cna 

o 
34 

If the same set of test problems is not run on each code, an uncontroll ed parameter ("problem se t") is 

introduced which may cause erroneous inferences. It is of less concern when randomly generated problems 
are used and the results are reported as the mean or the med ian of a large number of similar problems. The 
results of ask ing whe ther the arne problems were used on all codes are: 

yes 
no 

42 
5 

na 

cna 
1 
2 

lt would be inte resting to know how often the same programmer was used to develop the codes for 

evaluation. However, in most cases, we were unable to answer thi s question. The results are as follows: 

yes 
no 

7 

15 
na 

cna 
o 

28 

Using different co mputer languages can produce valying results. In fac t, if machine language is used, one 

might eve n say that comparisons with codes containing high level language are inappropriate. The results of 
askin g whethel' the same language was used for all codes are: 

yes 
no 

20 
6 

na 

cna 
o 

24 

A factor that may introduce variability 111 results of computational compari sons is the workload of the 

co mpute r when operating in a multi programmable environment. Unfortunately, thi s topic was addressed all 
too infrequentl y. We asked whethe r an attempt was made to run under the same workload: 

yes 
no 

2 
13 

na 
cna 

1 
34 

Note that multiprogramming is a recent phenomenon and is not applicable to the older studies; we could not 
determine the extent of multiprogramming in most of the more recent studi es. 

Tolerances (e.g., pivot tolerances and conve rgence tolerances) were also investigated. It is e ncouraging to 
have discovered that almost 25% of the re levant papers addressed thi s point. The statistics for using identical 

tolerances for each run are: 

yes 
no 

10 
4 

na 
cna 

11 
25 

Another paramete r whose effect is often overlooked is the zero tolerance, i.e., the definition of an E-range 

for the va lue zero. Asking whether the zero tole rance was held constant for all codes on all runs, we 
di scovered the followin g results: 

yes 
no 

9 
1 

571 

na 
cna 

10 
30 



One paper attempted to ascertain the effec ts of altering the zero tol erance . 

Another confounding variable is the use of different sta rting points within the algorithms. We recognize that 

in many codes available today, the algorithm for locating a starting point is built-in . However, if codes wi th 
diffe rent initial-solution algorithms are compared, the evaluation becomes complicated by an add itional 

factor. When we asked whether starting points were the same in each lUn , we sought answers for a ll areas of 
MP, and if the point was not addressed, we made no assumptions. The results follow: 

yes 
no 

13 
1 

na 

c na 

4. Empirical Results 

2 
34 

T hi s section deals with the empirical results of the experiments as they were re ported in the reference 
articles. We summarize how these results were prese nted and used, and point out noteworthy instances of 

good and bad methodology. Since many of these studies were cond ensed for publication , espec ially the 
articles appearing in re fereed journals, a nd since we did not have access to the original reports, we were 

una ble to evaluate thoroughly whether the data justify the conclusions stated. Thus, we could not c ritique the 

experiments with the same degree of understanding as could a consc ientious referee. Instead we ac ted as 
investigative reporters. 

4.1 Performance Measures 

The initial topi c considered was the measures of performance used in evaluating algorithm and softwa re 

effectiveness. A summary of the most frequently employed measure, central processing times, is provid ed in 
Table 4.1. Sixty-eight pe rcent of the pape rs (34) used processing times as a pe rformance indicator. Although 

the majority of these papers (24/34) reported the processing times for individual problems a sizable portion 
(14/34) used the average or the median processing times as an indicator of performance. 

TABLE 4 .1- How processing tilnes were refXJrted . 

Centra l Tendency Standard Deviation 
Individual Prob- Worst Case Analy-

(mean or median) lems Discussed s is 

No 36 47 26 48 

Yes 14 3 24 2 

Note that many experiments used central processing time without regard for input/output , even though the 

input/output portions may be two to three times as time consuming as the optimization elements (see 

Himmelblau , [5]). For nineteen of the thilty-four papers, we could not determine whether input/output was 
included as part of the reported processing times. On the other hand , thirteen papers mentioned that input/ 

output was not included. Only two papers provided the computer times required for input/output processi ng. 
There is a potential source of difficulty with using central processing as the sole pelformance indicator; 

there are many other objectives that have a bearing on the usefulness of the technique, for example the 
relative amount of storage that is required for eac h code. But the storage requirements were mentioned in only 

seven of the fifty papers. Three of these seven papers considered the number of non-zero elements which were 
stored as a criterion for comparison. 

An important consid eration that is ofte n left aggregated wi thin the measuremenl of input/output times is 

that of preprocessing. As mentioned in Section 3.1, preprocessing refers to computations performed prior to 

the "official" s tart of a program. These computa tions may constitute a signifi cant percentage of the 10taL In 
the area of networks, for example, the pre processing (sorting) of arcs by cost coeffi cients is usually 

accomplished during the input stage. Unfortunately, we could not ascertain the extent of preprocessing that 

occurred because the input/output spec ifications were not reported for these experiments. Not one paper fully 
described the extent of preprocessing that took place. 

572 

., 
I 



The number of fun ction evaluations occ urrin g durin g program exec ution is anothe r frequently used measure 

of performance. Tables 4.2 and 4.3 provide summary information regardin g thi s measure . Nine papers 
addressed thi s issue , primaril y in the area of un constrained optimization . Some researchers are re luctant to 
use function evaluations as a sole measure of pel{ormance . Thus, three of the nine papers that count ed 

function evaluations a lso re polted process ing time. In four pape rs, a standard unit of work was defin ed and 
used. 

The number of iterati ons to solve a probl em is anothe r measure of pe rforman ce that is close ly aligned with 

the previous one, and is relative ly indepe nd ent of the comput er used . See Tabl e 4 .4 for a summa ry of how 
often thi s c rite rion was used. 

TABLE 4 .2. Papers that used operation count or numbpr uJfun ction evalua tions as a performa nce "U~(LS I.I ((>. 

Subcl ass TOlal 
Nu mbe r Us ing Func ti on Eva lu -

Linear Progra ms 10 
Nelwo rk s 5 
Quadral ic Progra ms 

Int eger Progra ms 10 
Unconstrained 7 

No nlinear Prugra ms 5 
Knapsac k I 

Sh0l1est Path 6 
No nlineru· Equati ons 2 
Geome tri c Programs :3 

TABLE 4.3. Metlwels 0/ reporting/unction evalua{, i oll~. 

Melhod Numbe r 

Centra l Te nd e ncy 4 

Standard Devi ali on I 

By Proble m 7 

Worsl Case 0 

TABLE 4 .4. Tlu> /l ulllber of iteratiuns as a measu((> o!per!ormQl/.ce, 

General LP's 

Integer Programs 

Ge neral Nelworks 

Quadratic Programs 

U nconstra; ned 

Ce ntra l Te n-
de ncy 

3 
0 
2 

0 

Spread By Proble ms 

2 7 

0 8 
0 0 
0 
0 2 

atioll s 

I 

0 
0 
0 
4 

I 

0 
I 

2 
0 

Wors t Case 

0 
0 
0 
0 
0 

In e arlier works, it was thought that the number of pivots would be an invari ant and unbi ased measure of 

performance; a belief that has pe rseve red to the present. Unfortunat e ly, the ave rage time to conduct a pivot 

may vary co nsiderably. (See Mulvey [7]) for evidence showing a 17-fold va ria ti on in average pivol time for a 
single problem. Thus, conclusions drawn about code pe l{ormance based on result s from Ihe single indicalor 
"number of pivots" are likely to be mislead ing. The pivol strategy and the sc heme for storing the basis have a 
profound effect, and should be controlled during a computa tional expe rime nt. 

Numerical accuracy is occasionall y conside red more imporl a nl than effi ciency (as measured by processing 
tim e, number of fun ction eva lua tions, or number of iterations). Man y use rs of mathematical programs prefer 
an effi cient method whi ch is occasiona lly inaccurate over a relative ly ineffic ient method that provides accurate 
ans wers. Design engineers who solve small-scale nonlinear programming problems often express thi s 

preference. We should note thai methods employing integer arithmetic throughout are not influenced by 
accuracy conside rations, except when computer word size is exceeded, and these methods were excluded . 

573 



A variety of definition s of numerical accuracy exists: Himmelblau [5] provides a sample. Since we were 

primarily concem ed with how many articles addressed numerical accuracy, we did not distinguish among 
these definitions. Table 4 .5 indicates the percentage of experiments which treated numerical accuracy, by 
type of article. In total, numerical accuracy was considered in 14% of the articles. Reference [C5] IS 

particularly noteworthy for pointing out potential difficulties with setting the zero tolerance in the program. 

TABLE 4.5. Numeru:al accuracy as a measure of performance. 

Accuracy as Accuracy as Accuracy as 
Related to Related to a Function Fonnal Er-

CPU or Iter- Conver- of 0 Toler- ror Analysis 
ation gence ances 

Applicable Refereed Articles I 1 0 0 
Applicable Reports and Theses 2 0 0 0 
Applicable Books and Proceedings 0 0 
Theses and Disse rtations 0 0 0 

Robustness was the next measure of performance considered. We defined robustness as the percentage of 

problems solved by each method as related to the total number of problems attempted. Eighteen percent of the 
papers considered robustness. Since our definition of robustness depends upon the termination criterion used, 

whenever a program ends prematurely it is impossible to estimate how long it would have taken to reach the 
"optimal" solution. A variety of suggestions have bee n made for resolving this problem (see Gill and Murray, 

[4]). 
In another noteworthy article [A21], robustness was further refined as a measure of performance, and given 

the name reliability. A formal definition of reliability was provided, and the algorithms were ranked according 

to this criterion. 
It is clearly important to unde rstand why a method fail ed on particular problems. Three out of fifty papers 

went into a detailed analysis of this point, whereas twelve out of fifty papers simply counted how many 

problems could be solved by each code. 

Program set-up time for problems and codes was the final measure of performance addressed. Two papers 
in the area of general nonlinear programming attempted to quantify and measure this criterion for competing 
tec hniques. 

4.2. Statistical Methods 

Statistical methods have been used in analyzing computational experiments. The frequency of use in shown 
in Figure 4.1. With statistical sampling, inferences can be made about the performance of the techniques for 

'" a: ... 
"-... 
"-... 
0 

a: 4 ... 
'" :I; 
::> 
z 

1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 

YEAR OF PUBLICATION 

FIGURE 4. j. Use of statistical methods. 

574 



a population of test problems. Of course, the assumptions that such a "statistical" population ex is ts and that 

a "random" sampling procedure can be developed must be mad e. These assumptions might not be gene rally 
appropriate. As me ntioned earlie r, the curre nt lively debate over whe ther computational experime nts should 

be conducted with ca re full y se lected rea l-world problems or with randomly generated problems illus trates the 
lack of a clear resolution for thi s dilemma. In Table 4 .6, we indicate the statistical methods used within the 

fifty experiments. As shown, regression analys is was the stati stical method most frequently e mployed. It was 
us ually used to estima te a fun ction re lating co mputational difficulty to initial problem parameters. 

TABLE 4.6. Suroey of statistical metlwds employed. 

Hypoth-
Regres-

Factor- Signi-
Non-

Category esis SlOn 
AN OVA ial 

Latin 
fica nee 

Para-
Other 

Tests 
Analy-

Design 
Squares 

Tests 
me tric 

S IS Tests 

Refereed Papers 0 3 0 1 0 0 3 
Chapters of Books a nd Proceedi ngs 1 2 0 0 1 0 0 
Workin g Papers 0 J 0 0 0 0 1 
Theses a nd Disse l1 at ions 0 0 0 0 

Total 6 2 2 2 5 

4.3 Mathematical Checks 

Withoul indica ti on to the contra ry, researc he rs and journal referees ge ne ra ll y have fa ith that a code has 

"solved" a probl em when it te rmin ates. Integer progra mming is an exce ption to thi s rule. As shown in Table 
4 . 7, onl y 60/0 of the pape rs provided proof of optimality, a nd 340/0 provided the fin al objective-func tion values 

fo r the prob le ms so lved. Hence, it is diffi c ult to kn ow whe ther or not optimality was reac hed. Man y articl es 

fail ed to report the final values of the objec ti ve fun ction or 10 say whe re these va lues could be obta ined . Th is 
om iss ion seriously undermines the co nclus ions drawn , s ince replication of the results is imposs ible. In 

add ition, the da ta may not be co mpa tible because differe nt cod es may te rminate at d iffere nt so lulion values. 
The omiss ion of the degree of sa ti sfac tion obtained for the Kuhn-Tucke r cond iti ons furthe r degrades the 

results. The pape r of Cro wd e r e t a l. [2] is a n a tte mpt to correc t thi s problem by requiring ce rta in minimal 

sta nd a rds for publicati on. These authors be lieve that the va lues of the objec ti ve fun ction a nd the Kuhn­
Tuc ker " residuals" shoul d be in c lu ded in the publi shed a rtic le or in a suppl e me nta ry un ab ridged re port. 

no 

yes 

TABLE 4.7. Data at termination. 

Proof of Conditi ons 
Provided 

47 

3 

Objec tive Functi on 
Values 

33 
17 

4.4 Reporting of Empirical Evidence 

Empirical evidence wa s re ported primmil y in tab les of summary data . These talbes ta ke man y forms, of 

course. Table 4.8 summari zes the frequenc ies of the most popular me thods . There seems to be a trend to 
include more tec hnica l informat ion in the publi shed a r·tic les . 

Tota l 

TABLE 4.8. Presentation. of empirical evidence . 

Summary 
Stati sti cs 

20 

By Proble m 

34 

Value of Ob­
jective Func­
tion vs. Iter­
ation Count 

6 

575 

De nsit y of 
Arrays a s 

Func tion of 
It erati on 

o 

Othe r 

11 



Graph ics are anothe r means for reporting empirical evidence . Again, a varie ty of forms are included . Table 
4 .9 shows the incidence of various graphs. In fiv e instances, the re was very littl e empiri cal ev idence 

provided; a general di scussion of coding enhancement s replaced the usual evaluation d isc ussion. 

TABL E 4 .9. Types of graphs u.sed. 

Value of O. F. Size of Prob- # Functio n Problem 1'0-
vs. Ti me or It - lem vs . Time Evaluati ons vs . 

pologies 
eralion or It erati on Time 

Total 4 5 4 3 

4.5 . Interpretation of Results 

In thi s section we analyze how and why the researc he rs used the empirical evidence provided in their 

pa pers. 
Understanding and pred icting code performance were fundam e ntal concern s, and twen ty-four papers stated 

or implied thi s objective for their experiment. In seven pape rs, the domain of applicabil ity for eac h code was 

established by means of the computational expe riments. Six papers ind icated possibl e improve ments in the 
software , whereas fort y-two pape rs used the empirical evidence to demonstrate the relative rankings of the 

techniques tested; howeve r, the results we re compared with previous work in onl y eleven cases . Generally the 
ranking sc heme was not formall y defin ed , but in six cases a we ighted average was employed. 

The most glaring weakness, in our opinion , was the lack of conc ise statements indicating the purpose of the 

computational ex periment and the limitations of th e stud y. Onl y 30% of the papers provided thi s. Five papers 
gave a reference to a more comprehensive report of the experiment. 

5. Suggestions for Future Work 

The evidence shows that the development of a methodology for testing and evaluating mathematical softw are 

is at any early s tage, and the fie ld of mathematical programming is no exception. The recent creation of a 
journal (A CM's Transactions on Mathematical Software) to di sseminate information about mathema tical 

softw are indicates an increasing interest in thi s s ubjec t. Groups have been formed -one in statistics (The 

Committee on Evaluation of Statistical Program Pac kages (see Franc is [3])) and one in Mathematical 
Programming (COAL, [6]) - concerning themselves with computational aspects of the ir respec tive di sc iplines . 

Othe r such groups will no doubt ari se . 
Thi s pape r shows that a consensus for conducting computational experiments has not bee n reached, 

a lthough pattern s can be detected within certain areas of mathematical programs. On the whole, the more 
rece nt experiments appear improved in methodology only slightly over their predecessors. The 1953 paper 

[AI] of Hoffman was one of the most thorough evaluations. 
We believe that fundamental research in the area of computer-algorithm performance is lon g overdue. We 

further believe that deve lopmental work in the area of computational evaluation is greatly need ed. There are 

several obvious needs: (1) compact, porta ble problem ge nerators which build test probl e ms possessing 
cont rollable realistic structure ; (2) a modeling language for generating problems that takes into account the 

inherent s tructure of a class of problems; (3) ideas for reducing the computational burden of testin g large­

scale exa mples; (4) suitable performance indicators; and (5) an aware group of researchers. Thi s paper IS 

co ncerned with point (5), but the others are also important and should be subj ects for future wo rk . 

6 . References 

[I] Anderson, V. L. , and Mc Lean, R. A., Design of Expe rime nt s: A Realistic Approach (M. Dekker, Inc., New York , 1974). 
[21 Crowder, Harla n P. , Dembo, R. 5., and Mulvey, J. M., Gui delines for reporting computati onal experiments in mathematical 

programming, Work ing Paper No. HBS 77-8 (G rad uate School of Business, Harvard Unive rs ity, 1976), submitt ed to 

Mathematical Programming. 

[3] Franc is, lvor, He iberge r, R. M., and Velleman, P. F. , Cri teria and considerati ons in the evaluati on of s tati stica l p rogram packages, 

The America n Statistician, 29 (February I, 1975) . 

[4J Gill, P. E. , and Murray, W., Nume rical Methods fo r Co nstra ined Opti mizati on (Academic Press, New York, 1974). 

576 

( 



[5] Hirnrne lblau, D. M., Applied Nonlinear Programming (McCraw- Hill , New York, 1972). 

[6j Mathemati ca l Programming, 9, 13 1- 135 (August 1975). 

[71 Mulvey, J. M. , Pivot stra tegies for prima l-s implex ne twork codes (to appear ill the Journal of the ACM, 1978). 

Appendix A: The Papers Reviewed 

The refere nces in thi s bibl iography are grouped into four sec tions acco rdin g to the form of publica tion: (A) 
papers appearing in refereed journ als; (B) papers appearing in the proceedings of conferences and chapters 
from books; (C) technical repo rt s;* and (D) theses and dissertations. Wi thin each section the refe rences are 
generally ranked according to the date of publication. 

Section A 

[1] Hoffman , A., Mannos, M. , Sokolowsky, D., Wiegmann, N., Computational ex perience in solving linea r 
programs, J. SIAM, 1,17-33 (1953). 

[2] Dickson, J., and Frederick, F. , A decision rule for improved effi c iency in so lving linea r programming 
problems with the simplex algorithm, CACM, 3, 509-512 (Sept. 1960). 

[3] Muelle r, R., and Cooper, L. , A com parison of the primal-simplex and primal-dual algo rithms for linear 
programming, CACM, 8 , No. 11, 682-686 (Nov. 1965). 

[4) Srinivasan, V., An investigation of some computational aspects of integer programming, JACM , 12, 
No.4, 525-535 (Oct. 196~. 

[5) Box, M. J. , A compari son of several current optimization methods, and the use of transformations in 
constrained problems, Co mputer Journal , 9, 67- 77 (1966). 

[6) Gue, R. , Liggett , J ., and Ca in , K., Analysis of algori thms for the zero-one programming problem, 
CACM, 11, No. 12, 837-844 (Dec. 1968). 

[7) Bennett , J. M., Cookley, P. c., and Edwards, J ., The performance of an integer programming algorithm 
with test examples, The Australian Computer Journal , 1, No.3, 182-185 (Nov. 1968). 

[8) Trauth, c., and Woolsey, R. , Integer linear programming: A study in computational effi c iency, 
Management Science, 15, No.9, 481-493 (May 1969) . 

[9] Ravincl ran , A., Computat ional aspects of Lemke's complementarity algorithm applied to I inea r programs, 
Opsearch, 7,241-262 (1970). 

[10) Bard, Y. , Comparison of grad ien t methods for the so lution of nonlinear parameter-estimation problems, 
J. SIAM Numerical Analysis, 7, No.1 , 157-186 (March 1970). 

[11] Benichou , M., Gauthier, J. , Girodet, D., Hentges, G., Ribiere, C., and Vincent, 0 ., Experiments in 
mixed-integer linear programming, Mathematical Programming, 1,76-94 (1971). 

[12] Braitsch, R. , A computer comparison of four quadratic programming algorithms, Management Science, 
15, No. 11,631-643 (Jul y 1972). 

[13] Srinivasan, V., and Thompson, C., Benefit-cos t analysis of coding techniques for the primal 
transportation algorithm, JACM, 20, No.2, 193-213 (April 1973). 

[14] Asaadi, ]., Computational compari son of some nonlinear programs, Mathemati cal Programming, 4, 
144-154 (1973). 

[15] Brent , R., Some effic ient algorithms for solving systems of nonlinear equations, J. SIA M Numerical 
Analysis, 10, No.2, 327-344 (April 1973). 

[16] Mitra, C . , Investigation of some branch and bound s trategies for the solution of mixed intege r linear 
programs, Mathematical Programming, 4, 155-170 (1973). 

[17] Breu, R. , and Burde t, c., Branch and bound experime nts in zero-one programm ing, Mathematical 
Programming Study 2: Approaches to Integer Programming (No rth-Holland , Amsterdam , Netherlands, 
1-50, 1974). 

[I8) Glover, F. , Karn ey, D., Klingma n, D., and Napie r, A., A computational study of sta rt procedures, 
basis change crite ria , and solution algorithms for transportation problems, Management Sc ience, 20, 
No.5, 793-813 (Jan . 1974) . 

• Many of these reports have been submitted for publ iCAtion . Unknown to us , some may a lready have appeared; for this overs ight we apologize. One paper I C71 wa~ unfortuna tely 

pillced in this category . Because the National Bureau of Standards' Technical NOles are refereed publications, {C71 should have been included under Section A; thi s was recognized 100 

lale for revision. 

577 



[19] Pape, U., Impl ementation and effi c iency of Moore-algorithms for the shortest route problem, Mathemat­
ical Programming, 7,212- 222 (1974). 

[20] Barr, R., Glover, F., and Klingman , D. , An improved versIOn of the out-of-Kilter method and a 
comparative study of computer codes, Mathematical Programming, 7, 60-86 (1974). 

[21] Shan no , D. , and Phua , K. , Effec tive compari so n of un constrained optimization techniques, Management 
Science, 22, No.3, 321-330 (Nov. 1975). 

[22] Sharp, J., and Welling, P. , A simulation study of the error produced by approximation in sepa rable 
concave programming, Mathematical Programming Study 4: Computational Practice in Mathematical 
Programming (North-Holland, Amsterdam , Ne the rlands , 133-141, 1975). 

[23] Fayard , D., and Plateau , G., Resolution of the zero-one knapsack problem: compari son of me thods, 
Mathematical Programming, 8, 272-307 (1975). 

[24] Golden, B., Shortest path algorithms: A comparison , Operations Research, 24, No.6, 1164-1168 
(Nov.-Dec. 1976) . 

[25] Mahendrarajah, A. , and Fiala, F., A comparison of three algorithms for linear ze ro-one programs, 
ACM-TOMS, 2, No. 4 , 331-334 (Dec. 1976). 

[26] Che n, Der-San , and Zionts, S, Compari sons of some algorithms for solving the group theoreti c int eger 
programming problem, Operations Resea rch, 24, No.6, 1120-1128 (Nov.-Dec. 1976). 

Section B 

[1] Wolfe, P., and Cutler, L. , Experiments in linear programming, In R. Graves and P. Wolfe (eds.), 
Recent Advances in Mathematical Programming (McGraw-Hili, New York, pp. 177-200, 1963). 

[2] Smith, D. , and Orchard-Hays, W. , Computational effici ency in produc t form LP codes, in R . Graves 
and P . Wolfe (eds .), Recent Advances in Mathe matical Programming (McGraw-Hili, New York , pp . 
211-218, 1963). 

[3] Kuhn, H ., and Quandt, R. , An experimental study of the simplex method , Symposia on Applied 
Mathematics, 15, American Mathematical Society, Providence, RI, 107-124 (1962). 

[4] Bougoin , M., and Heurgon, E. , Study and comparison of algorithms of the shortest path through planned 
experiments, Proj ect Planning by Network Analysis, North-Holland , Amsterdam, Netherlands, 106-
118 (1969). 

[5] Colville, A. , A comparative study of nonlinear programming codes, IBM Scie ntifi c Center Re port No. 
320-2949, 487-500 (June 1968). 

[6] Abadie, J., and Guigou, J., Numerical experiments with the GRG method , in F. Lootsma, Numerical 
Methods for Nonlinear Optimization (Academic Press, New York , pp. 529-536, 1972). 

[7] Himmelblau, D., A uniform evaluation of unconstrained optimization techniques, in F. Lootsma , 
Numerical Methods for Nonlinear Optimization (Academic Press, New York , pp. 69-97, 1972). 

[8] Parkinson , J., and Hutchinson, D., An investigation into the effi ciency of variant s on the simplex 
method, in F . Lootsma, Numerical Methods for No nlinear Optimization (Academic Press , New York , 
pp. 115-135, 1972). 

[9] Dembo, R., and Mulvey, J., On the analysis and comparison of mathematical programming algorithms 
and software, Technical Report No. HBS 76-19, Harvard Business School, Boston , MA, 1976 (to 
appear in the Proceedings of the SIGMAP-NBS Bicentenni al Conference on Mathematica l Program­
ming, Nov. 1976) . 

[l0] Schlick, F. , and Nazareth, L. , A performance profil e study of three unconstrained optimization routines 
(to appear in the Proceedings of the SIGMAP-NBS Bicentennial Conference on Mathematical 
Programming, Nov. 1976). 

[11] Sargent, R. , and Sebastian, D., Numerical experience with algorithms for unconstrained minimization, 
in F. Lootsma, Numerical Methods for Nonlinear Optimization (Academic Press, Ne w York , pp. 45-
68, 1972). 

Section C 

[1] Yakimovsky, Y., Experiments on the comparative efficiency of various variants of the standard simplex 
algorithm, Technical RepOl·t No. 72-17 (Stanford University , Stanford, CA, Aug. 1972). 

578 



[2] Gochet, W., Loute, E., and Solow, D. , Comparati ve computer results of three algorithms for solving 
prototype geometric programming problems, CO RE Di scuss ion Paper No. 7409 (U nivers ity of 
Louvain , Brussels, Be lgium , April 1974). 

[3] McCoy, P., and Tom lin , J ., Some experime nt s on the acc uracy of three methods of upd ating the inverse 
in the simplex method , Technica l Report SOL 74-21 (Stanford Uni ve rs ity, Sta nford, CA, Dec. 1974) . 

[4] Hitchner, L. , A compara ti ve in vestigati on of the computational effi c iency of shortest path a lgorith ms, 
Technical Re port No. ORC 68-25 (U ni versity of Califomia, Be rk eley, CA, Nov. 1968). 

[5] Brocklehu rst, E . , and Den ni s, K. , A compari son of six algorithms for dense I inear programs, NPL 
Report NAC 51 (National Phys ical Laboratory, Teddington, Middl esex, England, June 1974). 

[6] Rijckaert , M., and Martens, X. , A compari so n of generalized geometric programming a lgorithms, 
Re port CE-RM-7503 (U niversity of Louvain , Brussels, Belgium, 1975) . 

[7] Gilsinn, J. , and Witzgall , c., A performance compari son of labeling a lgorithms for calc ul ating shortest 
path trees, Technical Note 772 (National Bureau of Standards, Washington, DC, May 1973). 

[8] Shier, D. , A computational study of a class of K shortest path algo rithms, Wo rking Paper (National 
Bureau of Standards, Washington, DC, April 1976) . 

[9] Li n, B., and Rardin , R. , Controll ed experimental design for comparison of integer programming 
a lgorithms, Report No. J-76-25 (Georgia In stitute of Technology, Atl anta, GA, Sept. 19 76). 

[10] Hillstro m, K., A s imulation test approach to the evaluation and compa ri son of unconstra ined nonlinear 
optimi zation a lgorithms, Report No. AN L-76-20 (A rgonne National Laboratory, Argon ne, IL , Feb. 
19 76). 

[11] Dembo, R. , The current state-of-the-art of algorithms and computer softwa re for geometri c programming, 
Working Paper No. 88 (Yale Univers ity, New Haven, CN, Nov. 1976) . 

Section 0 

[1] Zanaki s, S. , Experimental compari son of nonlinear programming algori thms in deri ving maximum 
li kel ihood estimates for the three-parameter We i bull distribution, Ph. D. Disserta tion (Pennsylvan ia 
Sta te University, Univers ity Park , PA, 1973) . (Available fro m Uni versity Microfilms.) 

[2] Lee, Shao-ju , An experimental study of the transportation algorithm , Master's Thesis (U ni vers ity of 
Califomia, Los Angeles, CA, 1968). 

Appendix B: The Questionnaire 

2. The Elements of the Experiment 

2 .1 Algorithms 

2. 1.1 
2. 1.2 
2.1.3 

Were different algorithms compared? 
Was method of presentation the same for all algorithms? 
Methods of presentation: 
2.1.3. 1 Referenced by name only? 
2.1. 3. 2 Reference to other descriptions in literature? 
2.1. 3.3 Extensive discussion? 
2.1. 3. 4 Brief discussion? 
2.1. 3. 5 Extensive flowchart? 
2. 1. 3.6 Brief flowchart? 
2.1. 3.7 Mathematical algorithm desc ription? 

2 .2 Problem Class 

2. 1.1 Method of desc ription: 
2.2.1.1 By name only? 

579 

----- [1] 
- - - - - [3] 
- - - - - [5] 

- - - - - [20] 
- - - - - [21] 

- - - - - [22] 
- - - - - [23] 
- - - - - [24] 
- - - - - [25] 
- - - - - [26] 
- - - - - [27] 
- - - - - [28] 

- - - - - [35] 



2.2.2 
2.3.3 

2.2.1.2 By mathematical form only? 
Application areas discussed? 
Any discussion of differences in problem class across technique? 

2.3 Software 

2.3.1 
2.3.2 

2.3.3 
2.3.4 

2.3.5 
2.3.6 
2.3.7 
2.3.8 

2.3.9 
2.3.10 
2.3.11 
2.3.12 
2.3.13 
2.3.14 

2.3.15 

2.3.16 

Was method of presentation same for all codes? 
Methods used: 
2.3.2.1 Referenced by name only? 
2.3.2.2 
2.3.2.3 
2.3.2.4 
2.3.2.5 
2.3.2.6 

Reference to other descriptions in literature? 
Extensive discussion? 
Brief discussion? 
Extensive flowchart? 
Brief flowchart? 

2.3.2.7 Were listings included? 
Were data structures discussed? 
Were storage requirements given? 
2.3.4.1 For code? 
2.3.4.2 For working storage? 
2.3.4.3 For offline storage? 
2.3.4.4 Total only? 
Were any codes commercially produced? 
Were all codes commercially produced? 
Was programming language unmentioned for any of the codes? 
What languages were used? 
2.3.8.1 FORTRAN? 
2.3.8.2 
2.3.8.3 
2.3.8.4 

ALGOL? 
PL/l 
Machine level? 

2.3.8.5 Any codes with mixtures? 
Any reference to more documentation of codes? 
Were codes liberally annotated with comments? 
Was code portability mentioned? 
Was code portability tested? 
Was ease of use of codes discussed? 
Was availability of codes mentioned? 
2.3.14. 1 Were any codes proprietary? 
Was output of codes mentioned? 
2.3.15.1 Sample output includes? 
Any discussion of why tolerances were chosen? 

3. Experimental Design 

3.1 The Problems 

3.1.1 
3.1.2 
3.1.3 
3.1.4 
3.1.5 
3.1.6 
3.1. 7 
3.1.8 
3.1.9 

Were randomly generated problems used? 
Did authors develop their own generators? 
Was generator availability mentioned? 
Was method of generation discussed? 
Was distribution of problem parameters mentioned? 
Was density under control of the generator? 
Were the ranges for the parameters given? 
Was the total number of problems run mentioned explicitly? 
Total number of problems run: 

580 

- - - - - [36] 
- - - - - [37] 
- - - - - [38] 

-----[45] 

--- -- [46] 
-----[47] 
- - - - - [48] 
- - - - - [49] 
- - - - - [50] 
- - - - - [51] 
- - - - - [52] 
- - - - - [55] 

- - - - - [56] 
- - - - - [57] 
- - - - - [58] 
- - - - - [59] 
- - - - - [60] 
- - - - - [61] 
- - - - - [62] 

- - - - - [63] 
- - - - - [64] 
- - - - - [65] 
- - - - - [66] 
- - - - - [67] 
- - - - - [68] 
- - - - - [69] 
- - - - - [70] 
- - - - - [71] 
- - - - - [72] 
- - - - - [73] 
- - - - - [74] 
- - - - - [75] 
- - - - - [76] 
- - - - - [77] 

- - - - - [5] 

- - - - - [20] 
- - - - - [21] 
- - - - - [22] 
- - - - - [23] 
- - - - - [24] 
- - - - - [25] 
- - - - - [26] 
- - - - - [27] 



3. 1.10 
3. 1.11 

3. 1.12 

3. 1.13 
3.1.14 
3.1.15 
3. 1.16 

3. 1.17 
3.1.18 
3. 1.19 
3 .1. 20 

3. 2.2 1 

3.1. 9 .1 In the range 1- 10? 
3. 1. 9.2 In the range 11-20? 
3. 1. 9.3 In the range 21-50? 
3.1.9.4 In the range 51- 100? 
3 . 1.9 .5 Greater than 100? 
Was the re a breakdown by s ize or type with replications? 
Number of sizes or types: 
3.1.11.1 In the range 1- 10? 
3. 1.11. 2 In the range 11- 20? 
3. 1.11 .3 In the range 21- 50? 
3.1. 11. 4 In the range 51- 100? 
3. 1.11. 5 Greater than 100? 
Number of replications: 
3. 1.12.1 In the range 3-5? 
3.1.12.2 In the range 5-1O? 
3. 1.12.3 Greater than 1O? 
Was there any di scussion of why the numbe r of probl ems was chosen? 
We re rea l world (RW) probl ems used? 
Was there a discussion of origins of R W problems? 
Was there a desc ription of each RW probl em? 
3. 1. 16.1 Was size gi ven for each? 
3. 1.16. 2 Was density mentioned for each? 
3. 1.16.3 Was the range of parameters given? 
Was there a reference to other desc riptions? 
Were an y of the RW probl ems spec ially ta ilored? 
Were the RW problems mentioned to be ava il abl e? 
Number of RW probl ems used: 
3. 1.20. 1 In the range 1- 1O? 
3. 1.20.2 In the range Jl-20? 
3 . 1.20.3 In the ran ge 21-50? 
3.1.20.4 In the range 51- 100? 
3. 1. 20. 5 Greater than 100? 
Was any preprocessing performed on the problems? 

3.2 The Computer Environment 

3.2.1 Characteri stics of the mac hine: 
3.2. 1.1 Was the name li sted? 
3.2.1.2 Was core storage ava ilable reported? 
3.2 .1.3 Was the operating system mentioned? 
3.2.1.4 Was the compiler named? 
3.2.1.5 Multi-programmability mentioned? 
3. 2.1. 6 Was word length given? 
3.2.2 Was the run time of day considered? 
3.2 .3 Were standardized times used? 

3.3 Expe riment Controls 

3. 3. 1 
3. 3 .2 

Were the goals of the experiment clearly defined? 
Was same computer used for all runs? 

581 

- - - - - [28] 
- - - - - [29] 
- - - - - [30] 
- - - - - [31] 
- - - - - [32] 
- - - - - [33] 

- - - - - [34] 
- - - - - [35] 
- - - - - [36] 
- - - - - \37] 
- - - - - [38] 

- - - - - [39] 
- - - - - [40] 
- - - - - [41] 
- - - - - [42] 
- - - - - [SO] 
- - - - - [51] 
- - - - - [52] 
- - - - - [53] 
- - - - - [54] 
- - - - - [55] 
- - - - - [60] 
- - - - - [6 1] 
- - - - - [62] 

- - - - - [63] 
- - - - - [64] 
- - - - - [65] 
- - - - - [66] 
- - - - - [67] 
- - - - - [68] 

- - - - - [1] 
- - - - - [3] 
- - - - - [5] 

- - - - - [20] 
- - - - - [21] 
- - - - - [22] 
- - - - - [23] 
- - - - - [24] 
- - - - - [25] 
- - - - - [26] 
- - - - - [27] 

- - - - - [40] 
- - - - - [41] 



3.3.3 Was same compiler used for all codes? 
3.3.4 Were the same problems used for all codes? 
3.3.5 Was same language used for all codes? 
3.3.6 Were codes programmed by the same person? 
3.3.7 Was an attempt made to run under same workload? 
3.3.8 Were same tolerances used for each problem? 
3.3.9 Was the effect of zero tolerances considered? 
3.3.10 Were starting points the same for each run? 
3.3.11 Were same termination criteria used for each run? 
3.3.12 Termination criteria used: 

3.3.12.1 Optimum achieved? 
3.3.12.2 Closeness to formal bound? 
3.3.12.3 Lack of reduction in objective function? 
3.3.12.4 Number of iterations exceeded? 
3.3.12.5 Computer time exceeded? 

3.3.13 Were all problems generated on same machine? 

4. Empirical Results 

4. 1 Measures of Performance 

4.1.1 

4.1.2 

4.1.3 

4.1.4 

4.1.S 

Processing times: 
4.1.1.1 Method of Reporting: Central tendency? 
4.1.1.2 Method of Reporting: Spread? 
4.1.1. 3 Method of Reporting: By problem? 
4.1.1.4 Method of Reporting: Worst case? 
4.1.1. S Were I/O time indicated? 
4.1.1.6 Was total processing time reported with no segregation of 

I/O? 
4.1.1. 7 Was preprocessing time considered? 
Functional evaluations (operations count): 
4.1.2.1 Any definition? 

4.1.2.2 
4.1.2.3 
4.1.2.4 
4.1.2.S 

4.1.2.1.1 Standard units of work? 
4.1. 2.1. 2 Horner units? 
4.1. 2.1.3 Comparable function evaluators? 
Method of Reporting: Central tendency? 
Method of Reporting: Spread? 
Method of Reporting: By problem? 
Method of Reporting: Worst case? 

Number of iterations: 
4.1.3.1 Method of Reporting: Central tendency? 
4.1.3.2 Method of Reporting: Spread? 
4.1.3.3 Method of Reporting: By problem? 
4.1.3.4 Method of Reporting: Worst case? 
Was numerical accuracy considered? 
4.1.4.1 As a function of CPU time or number of iterations? 
4.1.4.2 As a function of convergence tolerances? 
4.1.4.3 As a function of zero tolerances? 
4.1.4.4 Any formal error analysis? 
Was robustness considered? 
4.1.S.1 
4.1.5.2 

Discussion of why problems were not solved? 
Detailed formal analysis of robustness? 

582 

- - - - - [42) 
- - - - - [43) 
-----[44) 
- - - - - [4S) 
- - - - - [46) 
-----[47) 
- - - - - [48) 
- - - - - [49) 
- - - - - [50) 

- - - - - [51) 
- - - - - [52) 
- - - - - [53) 
- - - - - [54) 
- - - - - [5S) 
- - - - - [56) 

-----[1] 
- - - - - [5] 

- - - - - (20) 
- - - - - (21) 
- - - - - (22) 
- - - - - (23) 
- - - - - (24) 
- - - - - [2S) 

- - - - - (26) 

- - - - - (30) 
- - - - - (31) 
- - - - - (32) 
- - - - - (33) 
- - - - - (34) 
- - - - - (35) 
- - - - - [36) 
- - - - - (37) 

- - - - - (40) 
- - - - - (41) 
- - - - - [42) 
- - - - - (43) 
- - - - - [44) 
- - - - - [4S) 
- - - - - [46] 
-----[47] 
- - - - - [48] 
- - - - - [SO] 
- - - - - [SI] 
- - - - - [52] 



4.1.5.3 Number of proble ms solved (only)? 

4.1. 6 Was re li ab ility analyzed? 

4. 1. 6. 1 Definiti on given? 

4.1.6.2 Any e mpirica l evide nce show lI '? 

4.1. 7 Were storage req uireme nt s cons idered? 

4.1. 7.1 Numbe r of nOll-ze ro e leme nt s? 

4.1. 8 Was programme r se t-up time for problems an d codes count ed? 

4.2 Any Statistical Me thods Use d? 

4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.5 
4.2.6 
4.2.7 
4.2 .8 

Hypothesis testing? 

Regression ana lys is? 

Anal ys is of varia nce? 

Full fac tori a l design? 

Latin squares? 

Sign ifica nce test ing? 

Non-pa rame tric s ign tes t? 

Othe r 

4.3 Mathematical Checks 

4.3.1 
4.3.2 

Were the K-T cond itions ve rified? 

Were the objec tive fun ction values provided? 

4.4 Methods of Presenting Empirical Evidence 

4.4. 1 

4.4.2 

4.4.3 

Tables 

4.4.1.1 
4.4.1.2 
4.4.1. 3 
4.4.1.4 
4.4.1. 5 
Graphics 

Summary s ta tistics? 

By probl em? 

Value of objective fun ction ve rs us iteration count ? 

Density of arrays as a fun c tion of ite rati on count ? 

Other 

4.4.2.1 Value of the objective fun ction vs. time or ite rat ion? 

4.4.2.2. Size of proble m vs . time or ite ra tion? 

4.4.2.3 Function evaluation vs. time or it e ration? 

4.4.2.4 Problem topologies shown? 

Discussion only 

4.5 Interpretation of Results 

4.5.1 Understanding and predic ting code penormance 

4.5.1. 1 As a fun c tion of problem paramete rs? 

4.5.1.2 Matching algorithms {codes} with types of probl ems? 

4.5.2 Determining the doma in of applicabilit y for each code? 

4.5.3 Indicating poss ible improvemen ts in codes? 

4.5.4 Discussin g whic h me thod work s best? {Evaluat ion} 

4. 5.4.1 Were these result s compa red with ot her previous ex periments? 

4. 5.4.2 Types of ra ting sc hemes: 

4 .5.4.2.1 Domination? 

4.5.4.2.2 We ighted ave ragin g? 

4 .5.4.2.3 Totally arbitra ry? 

4.5.4.2.4 Sta ti sticall y superior? 

4.5.5 Extrapolating to wider classes of problems? 

583 

- - - - - [53] 
- - - - - [55] 
- - - - - [56] 
- - - - - [57] 
- - - - - [59] 
- - - - - [60] 
- - - - - 162] 

- - - - - [65] 
- - - - - [66] 
- - - - - 167] 
- - - - - [68] 
- - - - - 169J 
----- [70] 
----- [711 
- - - - - [72] 

- - - - - [74J 
----- [75] 

- - - - - PO] 
----- [11] 
- - - - - [12] 

- - - - - [13] 
- - - - - [l4] 

- - - - - [16] 
- - - - - [1 7] 
- - - - - [18] 
- - - - - [l9] 

- - - - - 125] 
- - - - - [26] 
- - - - - 127] 
- - - - - [28] 
- - - - - [29] 
- - - - - [35] 

- - - - - [37] 
- - - - - [38] 
- - - - - [39] 
- - - - - [40] 
----- [45] 



4.5.5.1 
4.5.5.2 

Formal (mathematical)? 

Informal (speculation)? 
(No basis) 

4.6 Were the limitations of the study indicated? 
4.7 Was there a reference to a more comprehensive report of this experiment? 
4.8 Discussion of whether the goals of the experiment were reached? 

584 

- - - - - [46] 
-----[47] 

- - - - - [50] 
- - - - - [55] 
- - - - - [60] 


	jresv83n6p_563
	jresv83n6p_564
	jresv83n6p_565
	jresv83n6p_566
	jresv83n6p_567
	jresv83n6p_568
	jresv83n6p_569
	jresv83n6p_570
	jresv83n6p_571
	jresv83n6p_572
	jresv83n6p_573
	jresv83n6p_574
	jresv83n6p_575
	jresv83n6p_576
	jresv83n6p_577
	jresv83n6p_578
	jresv83n6p_579
	jresv83n6p_580
	jresv83n6p_581
	jresv83n6p_582
	jresv83n6p_583
	jresv83n6p_584

