2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响

熊维, 谭凯, 刘刚, 乔学军, 聂兆生. 2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响[J]. 地球物理学报, 2015, 58(11): 4305-4316, doi: 10.6038/cjg20151135
引用本文: 熊维, 谭凯, 刘刚, 乔学军, 聂兆生. 2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响[J]. 地球物理学报, 2015, 58(11): 4305-4316, doi: 10.6038/cjg20151135
XIONG Wei, TAN Kai, LIU Gang, QIAO Xue-Jun, NIE Zhao-Sheng. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(11): 4305-4316, doi: 10.6038/cjg20151135
Citation: XIONG Wei, TAN Kai, LIU Gang, QIAO Xue-Jun, NIE Zhao-Sheng. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(11): 4305-4316, doi: 10.6038/cjg20151135

2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响

详细信息
    作者简介:

    熊维,男,主要从事大地测量与地球动力学方面的研究.E-mail:xiongwei_19881229@163.com

  • 中图分类号: P315

Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake

  • 2015年尼泊尔MW7.9地震重烈度区从震中向东延伸,致灾范围包括尼泊尔、印度北部、巴基斯坦、孟加拉和中国藏南地区,其应力调整对邻区和周边活动断裂可能产生重要影响.本文基于地震应力触发理论,采用岩石圈地壳分层黏弹性位错模型,计算了尼泊尔MW7.9地震引起的周边断裂,特别是青藏高原活动断裂的同震和震后库仑应力变化.结果显示,尼泊尔地震同震效应引起大部分震区库仑应力升高,余震主要分布在最大同震滑动等值线外部库仑应力升高区域;少量余震靠近最大滑动量区域,可能该区域积累的地震能量在主震期间没有完全释放.尼泊尔地震同震库仑应力对青藏高原,特别是中尼边境区域活动断裂有一定影响.亚东-谷露地堑南段、北喜马拉雅断裂西段、当惹雍错-定日断裂和甲岗-定结断裂同震库仑应力升高,其中当惹雍错-定日断裂南端,北喜马拉雅断裂西段同震库仑应力变化峰值超过0.01 MPa;帕龙错断裂、班公错断裂、改则-洞措断裂库仑应力降低,其地震发生概率有所降低.震后应力影响方面,未来40年内黏弹性松弛作用导致北喜马拉雅断裂、改则-洞措断裂和喀喇昆仑断裂整体应力卸载;藏南一系列正断层震后应力持续上升,其中帕龙错断裂南段受到震后黏弹性库仑应力影响,由应力阴影区逐渐转化为应力增强区,当惹雍错-定日断裂南段应力进一步加强,震后40年其南端应力变化峰值达到0.1345 MPa,亚东-谷露断裂南段应力亦持续增强.藏南正断层的地震活动性值得进一步关注.
  • 加载中
  • [1]

    Ali S T, Freed A M, Calais E, et al. 2008. Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation. Geophys. J. Int., 174(3): 904-918.

    [2]

    Armijo R, Tapponnier P, Han T L. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. J. Geophys. Res., 94(B3): 2787-2838.

    [3]

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356-372.

    [4]

    Elliott J R, Biggs J, Parsons B, et al. 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett., 35: L12309, doi: 10.1029/2008GL033659.

    [5]

    Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature, 411(6834): 180-183.

    [6]

    Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet Sci., 33: 335-367.

    [7]

    Freed A M, Ali S T, Bürgmann R. 2007. Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes. Geophys. J. Int., 169(3): 1164-1179.

    [8]

    Lei X L, Ma S L, Su J R, et al. 2013. Inelastic triggering of the 2013 MW6.6 Lushan earthquake by the 2008 MW7.9 Wenchuan earthquake. Seismology and Geology (in Chinese), 35(2): 411-422.

    [9]

    McCloskey J, Nalbant S S, Steacy S. 2005. Indonesian earthquake: Earthquake risk from co-seismic stress. Nature, 434(7031): 291.

    [10]

    Nalbant S S, Hubert A, King G C P. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. J. Geophys. Res., 103(B10): 24469-24486.

    [11]

    Nalbant S S, Steacy S, Sieh K, et al. 2005. Seismology: Earthquake risk on the Sunda trench. Nature, 435(7043): 756-757.

    [12]

    Papadimitriou E, Wen X Z, Karakostas V, et al. 2004. Earthquake triggering along the Xianshuihe Fault zone of western Sichuan, China. Pure Appl. Geophys., 161(8): 1683-1707.

    [13]

    Parsons T, Stein R S, Simpson R W, et al. 1999. Stress sensitivity of fault seismicity: a comparison between limited-offset oblique and major strike-slip faults. J. Geophys. Res., 104(B9): 20183-20202.

    [14]

    Parsons T, Yeats R S, Yagi Y, et al. 2006. Static stress change from the 8 October, 2005 M=7.6 Kashmir earthquake. Geophys. Res. Lett., 33: 1-4.

    [15]

    Pollitz F, Vergnolle M, Calais E. 2003. Fault interaction and stress triggering of twentieth century earthquakes in Mongolia. J. Geophys. Res., 108(B10): 2503, doi: 10.1029/002JB002375.

    [16]

    Shan B, Xiong X, Zheng Y, et al. 2009. Stress changes on major faults caused by MW7.9 Wenchuan earthquake, May 12, 2008. Sci. China Ser. D-Earth Sci., 52(5): 593-601, doi: 10.1007/s11430-009-0060-9.

    [17]

    Shan B, Xiong X, Wang R J, et al. 2013. Coulomb stress evolution along Xianshuihe-Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 377-378: 199-210.

    [18]

    Shan B, Xiong X, Zheng Y, et al. 2013. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake. Science China Earth Sciences, 56(7): 1169-1176.

    [19]

    Shao Z G, Fu R S, Xue T X, et al. 2008. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun MS8.1 earthquake. Chinese J. Geophys. (in Chinese), 51(3): 805-816.

    [20]

    Shen Z K, Wan Y G, Gan W J, et al. 2003. Viscoelastic triggering among large earthquakes along the east Kunlun fault system. Chinese J. Geophys. (in Chinese), 46(6): 786-795.

    [21]

    Sheng S Z, Wan Y G, Jiang C S, et al. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake. Chinese J. Geophys. (in Chinese), 58(5): 1834-1842, doi: 10.6038/cjg20150534.

    [22]

    Stein R S, King G C P, Lin J. 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 Magnitude=7.4 Landers earthquake. Science, 258(5086): 1328-1332.

    [23]

    Stein R S, King G C P, Lin J. 1994. Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors. Science, 265(5177): 1432-1435.

    [24]

    Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int., 128(3): 594-604.

    [25]

    Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature, 402(6762): 605-609.

    [26]

    Stein R S. 2003. Earthquake conversations. Sci. Am., 288(1): 72-79.

    [27]

    Tapponnier P, Mercier J L, Proust F, et al. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294(5840): 405-410.

    [28]

    Teng J W, Yuan X M, Zhang Y Q, et al. 2012. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau. Acta Petrologica Sinica (in Chinese), 28(12): 4077-4100.

    [29]

    Toda S, Lin J, Meghraoui M, et al. 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett., 35: L17305, doi: 10.1029/2008GL034903.

    [30]

    Wan Y G, Shen Z K, Sheng S Z, et al. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults. Acta Seismologica Sinica (in Chinese), 31(2): 128-139.

    [31]

    Wang C Y, Han W B, Wu J P, et al. 2003. Crustal structure beneath the Songpan-Garze orogenic belt. Acta Seismologica Sinica (in Chinese), 25(3): 229-241.

    [32]

    Wang R J, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci., 32(4): 527-541.

    [33]

    Wang Y Z, Wang F, Wang M, et al. 2014. Coulomb stress change and evolution induced by the 2008 Wenchuan earthquake and its delayed triggering of the 2013 MW6.6 Lushan earthquake. Seismol. Res. Lett., 85(1): 52-59, doi: 10.1785/0220130111.

    [34]

    Xie C D, Zhu Y Q, Lei X L, et al. 2010. Pattern of stress change and its effect on seismicity rate caused by MS8.0 Wenchuan earthquake. Sci. China Earth Sci., 53(9): 1260-1270, doi: 10.1007/s11430-010-4025-9.

    [35]

    Xiong X, Shan B, Zheng Y, et al. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 482(1-4): 216-225.

    [36]

    Xu J, Shao Z G, Ma H S, et al. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone. Chinese J. Geophys. (in Chinese), 56(4): 1146-1158, doi: 10.6038/cjg20130410.

    [37]

    Zhang B, Cheng H H, Shi Y L. 2015. Calculation of the co-seismic effect of MS8.1 earthquake, April 25, 2015, Nepal. Chinese J. Geophys. (in Chinese), 58(5): 1794-1803, doi: 10.6038/cjg20150529.

    [38]

    Zhang Y, Xu L S, Chen Y T. 2015. Rupture process of the 2015 Nepal MW7.9 earthquake: Fast inversion and preliminary joint inversion. Chinese J. Geophys. (in Chinese), 58(5): 1804-1811, doi: 10.6038/cjg20150530.

  • 加载中
计量
  • 文章访问数:  2545
  • PDF下载数:  4351
  • 施引文献:  0
出版历程
收稿日期:  2015-06-29
修回日期:  2015-10-19
上线日期:  2015-11-20

目录