2015年尼泊尔地震破裂过程的统一模型

刘刚, 杨少敏, 师宏波, 聂兆生, 熊维, 王迪晋, 李恒, 周宇, 乔学军, 谭凯, 王琪. 2017. 2015年尼泊尔地震破裂过程的统一模型. 地球物理学报, 60(7): 2663-2679, doi: 10.6038/cjg20170714
引用本文: 刘刚, 杨少敏, 师宏波, 聂兆生, 熊维, 王迪晋, 李恒, 周宇, 乔学军, 谭凯, 王琪. 2017. 2015年尼泊尔地震破裂过程的统一模型. 地球物理学报, 60(7): 2663-2679, doi: 10.6038/cjg20170714
LIU Gang, YANG Shao-Min, SHI Hong-Bo, NIE Zhao-Sheng, XIONG Wei, WANG Di-Jin, LI Heng, ZHOU Yu, QIAO Xue-Jun, TAN Kai, WANG Qi. 2017. A unified source model of the 2015 Gorkha earthquake. Chinese Journal of Geophysics (in Chinese), 60(7): 2663-2679, doi: 10.6038/cjg20170714
Citation: LIU Gang, YANG Shao-Min, SHI Hong-Bo, NIE Zhao-Sheng, XIONG Wei, WANG Di-Jin, LI Heng, ZHOU Yu, QIAO Xue-Jun, TAN Kai, WANG Qi. 2017. A unified source model of the 2015 Gorkha earthquake. Chinese Journal of Geophysics (in Chinese), 60(7): 2663-2679, doi: 10.6038/cjg20170714

2015年尼泊尔地震破裂过程的统一模型

  • 基金项目:

    中国地震局地震研究所所长基金(IS201326127,IS201506204),国家自然科学基金(41541029,41404016,41504011,41574017,41304046),湖北省技术创新专项(2016AHB012)联合资助

详细信息
    作者简介:

    刘刚, 男, 1984年生, 助理研究员, 博士研究生, 主要从事地震大地测量学研究.E-mail:whgpslg@gmail.com

    通讯作者: 王琪, 男, 1962年生, 教授, 博士生导师, 主要从事大地测量与地球动力学研究.E-mail:wangqi@cug.edu.cn
  • 中图分类号: P541

A unified source model of the 2015 Gorkha earthquake

More Information
  • 模拟2015年尼泊尔地震(主震MW7.8及最大余震MW7.3)GPS/InSAR同震位移、远震体波、高频GPS位移波形和强震加速度记录,构建统一震源模型.统一模型分布特征主要由InSAR观测决定,地震矩释放过程则与P波模型相似,静态与高频GPS观测增加了对破裂时空特征的约束强度;各种比对表明,该模型对各基于单一类型反演模型具有很好的兼容性,棋盘测试展现其具有更优空间分辨率,最小可恢复20 km×20 km尺度的空间特征,压缩了非同震信号或误差导致的零散瑕疵,主、余震破裂具有更好的空间对应关系.主震展布范围为140 km×80 km;4 m以上破裂集中在加德满都以北30 km、深度15 km的狭长区域内,最大滑动量为7.4 m;破裂持续总时长为60 s,破裂速度为3.3 km·s-1,子断层上升时间在10 s内.MW7.3余震破裂区域位于主震东侧边缘,滑动量围绕震中扩散,扩展范围为30 km×20 km,最大滑动量约为4.4 m,总破裂持续时间为35 s.本次地震中静态和高频的GPS观测亦具备独立约束主震破裂扩展过程的能力.

  • 加载中
  • 图 1 

    `尼泊尔地震构造背景及MW7.8主震与MW7.3余震静、动态形变场

    Figure 1. 

    Tectonic setting of the Gorkha earthquake and surface deformation including permanent offsets and kinematic waves caused by MW7.8 mainshock and MW7.3 aftershock

    图 2 

    MW7.8主震与MW7.3余震滑动分布的独立模型

    Figure 2. 

    Slip distributions of MW7.8 mainshock and MW7.3 aftershock obtained by the separate inversions

    图 3 

    联合反演MW7.8主震与MW7.3余震滑动分布

    Figure 3. 

    Slip distributions of MW7.8 mainshock and MW7.3 aftershock obtained by the joint inversions of (a) near-field datasets, (b) all datasets

    图 4 

    MW7.8主震、MW7.3余震地震矩释放率函数

    Figure 4. 

    Moment rate functions of (a) MW7.8 mainshock and (b) MW7.3 aftershock

    图 5 

    棋盘检测

    Figure 5. 

    Checkerboard tests

    图 6 

    速度敏感度检测

    Figure 6. 

    Rupture velocity test

    图 S1 

    不同子断层上升时间和破裂速度在KKN4垂直向的模拟值与观测值的比较

    Figure S1. 

    Synthetic vertical displacements featured with different rupture velocities and rise times at station KKN4 from the 24 scenario models compared to the observed data (black trace)

    图 7 

    时间扩展参数.

    Figure 7. 

    Kinematic source parameters

    图 S2 

    倾角(a)、走向(b)及长度(c)的格网搜索结果

    Figure S2. 

    Grid search for dip, strike and length

    图 S3 

    同震永久形变的模拟值与观测值的拟合残差

    Figure S3. 

    Residuals between observed and synthetic coseismic permanent displacements

    图 S4 

    强地面运动的模拟值与观测值的比较

    Figure S4. 

    Comparison of observed and synthetic strong motions

    图 S5 

    远震P波的模拟值与观测值的比较

    Figure S5. 

    Comparison of observed and synthetic waves of teleseismic P wave

    图 8 

    平滑因子与归一化残差的折衷曲线

    Figure 8. 

    Trade-off curves indicating normalized inversion residual versus smooth weight for each dataset

    表 1 

    单独模型与联合模型的参数对比

    Table 1. 

    Some parameters of separate and joint models

    下载: 导出CSV

    表 2 

    主震各种模型的模拟值与观测值拟合平均残差与互相关系数

    Table 2. 

    Mean residuals and cross correlation coefficients of separate and joint inversions of mainshock

    下载: 导出CSV
  •  

    Ader T, Avouac J, Jing L Z, et al. 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan thrust:implications for seismic hazard. Journal of Geophysical Research, 117(B4):B04403, doi:10.1029/2011JB009071.

     

    Avouac J, Meng L S, Wei S J, et al. 2015. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9):708-711. doi: 10.1038/ngeo2518

     

    Elliott J R, Jolivet R, González P J, et al. 2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 9(2):174-180. doi: 10.1038/ngeo2623

     

    Fan W Y, Shearer P. 2015. Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophysical Research Letters, 42(14):5744-5752, doi:10.1002/2015GL064587.

     

    Feng G C, Li Z W, Shan X J, et al. 2015. Geodetic model of the 2015 April 25 MW7.8 Gorkha Nepal Earthquake and MW7.3 aftershock estimated from InSAR and GPS data. Geophysical Journal International, 203(2):896-900. doi: 10.1093/gji/ggv335

     

    Feng W P, Lindesy E, Barbot S, et al. 2016. Source characteristics of the 2015 MW7.8 Gorkha (Nepal) earthquake and its MW7.2 aftershock from space geodesy. Tectonophysics, doi:10.1016/j.tecto.2016.02.029.

     

    Galetzka J, Melgar D, Genrich J, et al. 2015. Slip pulse and resonance of Kathmandu basin during the 2015 MW7.8 Gorkha earthquake, Nepal imaged with geodesy. Science, 349:1091-1095, doi:10.1126/science.aac6383.

     

    Gao R, Lu Z W, Klemperer S, et al. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7):555-560. doi: 10.1038/ngeo2730

     

    Geng T, Xie X, Fang R X, et al. 2016. Real-time capture of seismic waves using high-rate multi-GNSS observation:Application to the 2015 MW7. 8 Nepal earthquake. Geophysical Research Letters, 43(1):161-167, doi:10.1002/2015GL067044.

     

    Grandin R, Vallée M, Satriano C, et al. 2015. Rupture process of the MW=7.9 2015 Gorkha earthquake (Nepal):Insights into Himalayan megathrust segmentation. Geophysical Research Letters, 42(20):8373-8382, doi:10.1002/2015GL066044.

     

    Ide S, Takeo M, Yoshida Y. 1996. Source process of the 1995 Kobe Earthquake:Determination of spatio-temporal slip distribution by bayesian modeling. Bulletin of the Seismological Society of America, 86(3):547-566. https://www.researchgate.net/publication/265287522_Source_Process_of_the_1995_Kobe_Earthquake_Determination_of_Spatio-_Temporal_Slip_Distribution_by_Bayesian_Modeling

     

    Kikuchi M, Kanamori H. 1991. Inversion of complex body wave-Ⅲ. Bulletin of the Seismological Society of America, 81(6):2335-2350.

     

    Kobayashi H, Koketsu K, Miyake H, et al. 2016. Joint inversion of teleseismic, geodetic, and near-field waveform datasets for rupture process of the 2015 Gorkha, Nepal, earthquake. Earth, Planets and Space, 68:66, doi:10.1186/s40623-016-0441-1.

     

    Kobayashi T, Morishita Y, Yarai H. 2015. Detailed crustal deformation and fault rupture of the 2015 Gorkha earthquake, Nepal, revealed from ScanSAR-based interferograms of ALOS-2. Earth, Planets and Space, 67:201, doi:10.1186/s40623-015-0359-z.

     

    Lavé J, Avouac J. 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105(B3):5735-5770. doi: 10.1029/1999JB900292

     

    Lei J S, Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0). Geochemistry, Geophysics, Geosystems, 10(10):Q10010, doi:10.1029/2009GC002590.

     

    Lei J S, Li Y, Xie J R, et al. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau. Journal of Geophysical Research, 119(3):2174-2198, doi:10.1002/2013JB010847.

     

    Li C, Van Der Hilst R, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2):157-168. doi: 10.1016/j.epsl.2008.07.016

     

    Lindsey E, Natsuaki R, Xu X H, et al. 2015. Line-of-sight displacement from ALOS-2 interferometry:MW7.8 gorkha earthquake and MW7.3 aftershock. Geophysical Research Letters, 42, 6655-6661, doi:10.1002/2015GL065385.

     

    Liu C L, Zheng Y, Wang R J, et al. 2016. Rupture processes of the 2015 MW7.9 Gorkha earthquake and its MW7.3 aftershock and their implications on the seismic risk. Tectonophysics, 682:264-277, doi:10.1016/j.tecto.2016.05.034.

     

    Liu G, Nie Z S, Fang R X, et al. 2014. Recognition of seismic phases recorded by high-rate GNSS measurements:Simulation and case studies. Chinese J. Geophys., 57(9):2813-2825, doi:10.6038/cjg20140908.

     

    Liu G, Wang Q, Qiao X J, et al. 2015. The 25 April 2015 Nepal Ms8.1 earthquake slip distribution from joint inversion of teleseismic, static and high-rate GPS data. Chinese J. Geophys., 58(11):4287-4297, doi:10.6038/cjg20151133.

     

    Liu J, Ji C, Zhang J Y, et al. 2015. Tectonic setting and general features of coseismic rupture of the 25 April, 2015 MW7.8 Gorkha, Nepal earthquake. Chinese Science Bulletin, 60(27):2640-2655, doi:10.1360/N972015-00559.

     

    Miyazaki S, Larson K, Choi K, et al. 2004. Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1 Hz GPS data. Geophysical Research Letters, 31(21):L211603, doi:10.1029/2004GL021457.

     

    Pei S S, Liu H B, Lin B, et al. 2016. High-resolution seismic tomography of the 2015 MW7.8 Gorkha earthquake, Nepal:Evidence for the crustal tearing of the Himalayan rift. Geophysical Research Letters, 43(17):9045-9052, doi:10.1002/2016GL069808.

     

    Qiu Q, Hill E, Barbot S, et al. 2016. The mechanism of partial rupture of a locked megathrust:The role of fault morphology. Geology, 44(10):875-878. doi: 10.1130/G38178.1

     

    Shan X J, Zhang G H, Wang C C, et al. 2015. Joint inversion for the spatial fault slip distribution of the 2015 Nepal MW7.9 earthquake based on InSAR and GPS observations. Chinese J. Geophys., 58(11):4266-4276, doi:10.6038/cjg20151131.

     

    Tan K, Zhao B, Zhang C H, et al. 2016. Rupture models of the Nepal MW7.9 earthquake and MW7.3 aftrershock constrained by GPS and InSAR coseimic deformations. Chinese J. Geophys., 59(6):2080-2093, doi:10.6038/cjg20160614.

     

    Tan K, Zhang C H, Zhao B, et al. 2017. Multiplicity of solutions to geophysical inversion reflected by rupture slip distribution of the 2015 Nepal earthquake. Geodesy and Geodynamics, 8(1):59-69, doi:10.1016/j.geog.2016.12.003.

     

    Teng J W, Yuan X M, Zhang Y Q, et al. 2012. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau. Acta Petrologica Sinica, 28(12):4077-4100.

     

    Wang D, Mori J. 2016. Short-Period Energy of the 25 April 2015 MW7.8 Nepal Earthquake Determined from Backprojection Using Four Arrays in Europe, China, Japan, and Australia. Bulletin of the Seismological Society of America, 106(1):259-266, doi:10.1785/0120150236.

     

    Wang K, Fialko Y. 2015. Slip model of the 2015 MW7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophysical Research Letters, 42(18):7452-7458, doi:10.1002/2015GL065201.

     

    Wang W M, Hao J L, He J K, et al. 2015. Rupture Process of the MW7.9 Nepal earthquake April 25, 2015. Science China Earth Sciences, 58(10):1895-1900, doi:10.1007/s11430-015-5170-y.

     

    Yabuki T, Matsu'ura M. 1992. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophysical Journal International, 109(2):363-375. doi: 10.1111/gji.1992.109.issue-2

     

    Yagi Y, Okuwaki R. 2015. Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophysical Research Letters, 42(15):6229-6235, doi:10.1002/2015GL064995.

     

    Yin A, Harrison T. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211

     

    Yokota Y, Koketsu K, Hikima K, et al. 2009. Ability of 1 Hz GPS data to infer the source process of a medium-sized earthquake:The case of the 2008 Iwate-Miyagi Nairku, Japan, earthquake. Geophysical Research Letters, 36(12):L12301, doi:10.1029/2009GL037799.

     

    Yoshida S, Koketsu K. 1990. Simultaneous inversion of waveform and geodetic data for the rupture process of the 1984 Naganoken-Seibu, Japan, earthquake. Geophysical Journal International, 103(2):355-362. doi: 10.1111/gji.1990.103.issue-2

     

    Yoshida S, Koketsu K, Shibazaki B, et al. 1996. Joint inversion of near-and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe Earthquake. Journal of Physics of the Earth, 44(5):437-454. doi: 10.4294/jpe1952.44.437

     

    Yue H, Lay T. 2011. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (MW9.1). Geophysical Research Letters, 38(7):L00G09, doi:10.1029/2011GL048700.

     

    Yue H, Lay T. 2013. Source Rupture Models for the MW9.0 2011 Tohoku earthquake from joint inversions of high-rate geodetic and seismic data. Bulletin of the Seismological Society of America, 103(28):1242-1255, doi:10.1785/0120120119.

     

    Zhang G H, Hetland E, Shan X J, et al. 2015. Slip in the 2015 MW7.9 Gorkha and MW7.3 Kodari, Nepal, earthquakes revealed by seismic and geodetic data:delayed slip in the Gorkha and slip deficit between the two earthquakes. Seismological Research Letters, 86(6):1578-1586, doi:10.1785/0220150139.

     

    Zhang L F, Fatchurochman I, Liao W L, et al. 2013. Source rupture process inversion of the 2013 Lushan earthquake, China. Geodesy and Geodynamics, 4(2):16-21, doi:10.3724/SP.J.1246.2013.02016.

     

    Zhang L F, Li J G, Liao W L, et al. 2016. Source rupture process of the 2015 Gorkha, Nepal MW7.9 earthquake and its tectonic implications. Geodesy and Geodynamics, 7(2):124-131, doi:10.1016/j.geog.2016.03.001.

     

    Zhang Y, Xu L, Chen Y T. 2015. Rupture process of the 2015 Nepal MW7.9 earthquake:Fast inversion and preliminary joint inversion. Chinese J. Geophys., 58(5):1804-1811, doi:10.6038/cjg20150530.

     

    Zhao J M, Yuan X H, Liu H B, et al. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25):11229-11233. doi: 10.1073/pnas.1001921107

     

    Zhou Z G, Lei J S. 2016. Pn anisotropic tomography and mantle dynamics beneath China. Physics of the Earth and Planetary Interiors, 257:193-204. doi: 10.1016/j.pepi.2016.06.005

     

    Zhu L P, Rivera L. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Research Letters, 148(3):619-627.

     

    单新建, 张国宏, 汪驰升等. 2015.基于InSAR和GPS观测数据的尼泊尔地震发震断层特征参数联合反演研究.地球物理学报, 58(11):4266-4276, doi:10.6038/cjg20151131. http://www.geophy.cn/CN/abstract/abstract11996.shtml

     

    刘刚, 聂兆生, 方荣新等. 2014.高频GNSS形变波的震相识别:模拟实验与实例分析.地球物理学报, 57(9):2813-2825, doi:10.6038/cjg20140908. http://www.geophy.cn/CN/abstract/abstract10721.shtml

     

    刘刚, 王琪, 乔学军等. 2015.用连续GPS与远震体波联合反演2015年尼泊尔中部MS8.1地震震源破裂过程.地球物理学报, 58(11):4287-4297, doi:10.6038/cjg20151133. http://www.geophy.cn/CN/abstract/abstract11998.shtml

     

    刘静, 纪晨, 张金玉等. 2015. 2015年4月25日尼泊尔MW7.8级地震的孕震构造背景和特征.科学通报, 60(27):2640-2655, doi:10.1360/N972015-00559.

     

    谭凯, 赵斌, 张彩红等. 2016. GPS和InSAR同震形变约束的尼泊尔MW7.9和MW7.3地震破裂滑动分布.地球物理学报, 59(6):2080-2093, doi:10.6038/cjg20160614. http://www.geophy.cn/CN/abstract/abstract12853.shtml

     

    王卫民, 郝金来, 何建坤等. 2015. 2015年4月25日尼泊尔MW7. 9级地震震源过程.中国科学:地球科学, 45(9):1421-1426.

     

    张勇, 许力生, 陈运泰. 2015. 2015年尼泊尔MW7.9地震破裂过程:快速反演与初步联合反演.地球物理学报, 58(5):1804-1811, doi:10.6038/cjg20150530. http://www.geophy.cn/CN/abstract/abstract11510.shtml

     

    滕吉文, 阮小敏, 张永谦等. 2012.青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹.岩石学报, 28(12):4077-4100. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212022.htm

  • 加载中

(13)

(2)

计量
  • 文章访问数:  2633
  • PDF下载数:  726
  • 施引文献:  0
出版历程
收稿日期:  2016-08-04
修回日期:  2017-03-28
上线日期:  2017-07-05

目录