•  
  •  
 

Abstract

Mismatched timing between the supply and demand of energy calls for reliable storage systems. Energy storage systems have become further significant with the widespread implementation of renewable energy. These systems can mitigate problems that are often associated with renewable energy sources such as supply unreliability while meeting the de-mand during peak hours. Energy can be stored in various forms, yet storage systems can be generally grouped based on their output forms, namely (i) electricity and (ii) heat or thermal energy. Electrical energy is the most convenient and effective form since it can power almost all modern devices. However, the electricity itself is vastly produced by ther-modynamic cycles at a particular thermal efficiency using thermal energy from fossil fuels. Meanwhile, thermal energy for the HVAC&R and the production of hot water remains the largest portion of the building energy sector. Thermal energy can be stored in the form of sensible, latent, and thermochemical energy. This review focuses on thermochemi-cal sorption-based energy storage systems. These systems exploit endothermic and exothermic sorption processes for charging and discharging of the thermal energy. Sorption-based storage systems exhibit huge potential due to a high energy density and their ability to store the energy at room temperature. We discuss the current state-of-the-art develop-ments, key challenges, and future prospects of sorption-based energy systems.

Bahasa Abstract

Sistem Penyimpanan Energi Berbasis Penyerapan: Suatu Kajian. Ketidakserasian waktu antara suplai dan per-mintaan energi menuntut sistem penyimpanan yang andal. Sistem-sistem penyimpanan energi menjadi semakin signif-ikan dengan implementasi yang meluas energi yang dapat diperbaharui. Sistem-sistem ini dapat mengurangi masalah seperti ketidakandalan suplai ketika memenuhi permintaan selama jam-jam puncak yang seringkali disatukan dengan sumber-sumber energi yang dapat diperbaharui. Sekalipun demikian, energi yang dapat disimpan dalam bentuk sistem penyimpan umumnya dapat dikelompokkan berdasarkan pada bentuk outputnya yaitu: (i) elektrisitas dan (ii) panas atau energi termal. Energi listrik merupakan bentuk energi yang paling nyaman dan efektif karena energi listrik dapat meng-gerakkan hampir semua alat-alat modern. Namun demikian, elektrisitas itu sendiri diproduksi dengan cepat melalui si-klus termodinamik dengan suatu efisiensi termal tertentu dengan menggunakan energi termal yang berasal dari bahan ba-kar fosil. Sementara, energi termal untuk HVAC&R dan produksi air panas masih merupakan bagian terbesar dari sektor energi bangunan. Energi termal dapat disimpan dalam bentuk panas sensibel, panas laten, dan termokimia. Pertimbangan ini memfokuskan pada sistem-sistem penyimpanan energi berbasis penyerapan yang merupakan sistem penyimpanan tipe termokimia. Sistem ini mengeksploitasi proses penyerapan endotermis dan eksotermis untuk mengisi dan menge-luarkan energi panas. Sistem penyimpanan berbasis penyerapan memperlihatkan potensi yang sangat besar karena kerapatan energi dan kemampuannya untuk menyimpan energi pada temperatur ruang. Kami mengkaji latar belakang teknologi ini, perkembangannya saat ini, kendala kunci dan aspek-aspek masa depan dari sistem penyimpanan energi berbasis penyerapan.

References

M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermody-namics, 7th ed., Wiley, New York, 2010, p.1024. https://books.google.co.jp/books?id=oyt8iW6B4aUC.

Renewable Energy Sources - Energy Explained, Your Guide To Understanding Energy - Energy In-formation Administration, (n.d.). https://www.eia. gov/energyexplained/?page=renewable_home (accessed October 19, 2018).

M.S. Whittingham, Science 192 (1976) 1126 LP-1127. http://science.sciencemag.org/content/192/ 4244/1126.abstract.

B. Steffen, Energy Policy. 45 (2012) 420. doi:10.1016/j.enpol.2012.02.052.

Y.-D. Kim, K. Thu, S.-H. Choi, Desalination. 367 (2015) 161. doi:10.1016/j.desal.2015.04.003.

Y.-D. Kim, K. Thu, K.C. Ng, Evergreen. 2 (2015) 50.

K.E. N’Tsoukpoe, H. Liu, N. Le Pierrès, L. Luo, Renew. Sustain. Energy Rev. 13 (2009) 2385. doi:10.1016/j.rser.2009.05.008.

L.B. Hyman, Sustainable thermal storage systems: planning, design, and operations, n.d.

G. Alva, L. Liu, X. Huang, G. Fang, Renew. Sustain. Energy Rev. 68 (2017) 693. doi:10.1016/ j.rser.2016.10.021.

A.L. Reed, A.P. Novelli, K.L. Doran, S. Ge, N. Lu, J.S. McCartney, Renew. Energy. 126 (2018) 1. doi:10.1016/j.renene.2018.03.019.

J.F. Carneiro, C.R. Matos, S. van Gessel, Renew. Sustain. Energy Rev. 99 (2019) 201. doi:10.1016/j.rser.2018.09.036.

K. Xie, Y.-L. Nian, W.-L. Cheng, Energy. 163 (2018) 1006. doi:10.1016/j.energy.2018.08.189.

Y. Jiang, Q. Gao, L. Wang, M. Li, Procedia Envi-ron. Sci. 12 (2012) 659. doi:10.1016/j.proenv. 2012.01.332.

P. Fleuchaus, B. Godschalk, I. Stober, P. Blum, Renew. Sustain. Energy Rev. 94 (2018) 861–876. doi:10.1016/j.rser.2018.06.057.

B. Ugur, Thermal Energy Storage in Adsorbent Beds, Université d’Ottawa/University of Ottawa, 2013. https://ruor.uottawa.ca/bitstream/10393/ 24362/1/Ugur_Burcu_2013_thesis.pdf.

D. Lefebvre, F.H. Tezel, Renew. Sustain. Energy Rev. 67 (2017) 116. doi:10.1016/j.rser.2016. 08.019.

B. Michel, N. Mazet, S. Mauran, D. Stitou, J. Xu, Energy. 47 (2012) 553–563. doi:10.1016/j.energy. 2012.09.029.

Y.I. Aristov, Futur. Cities Environ. 1 (2015) 10. doi:10.1186/s40984-015-0011-x.

A. Hauer, E. L¨avemann, Open Absorption Sys-tems for Air Conditioning and Thermal Energy Storage, in: H.Ö. Paksoy (Ed.), Therm. Energy Storage Sustain. Energy Consum., Springer Nether-lands, Dordrecht, 2007: pp. 429–444. doi:10.1007/978-1-4020-5290-3.

L.F. Cabeza, A. Solé, C. Barreneche, Renew. Ener-gy. 110 (2017) 3–39. doi:10.1016/j.renene. 2016.09.059.

F. Rouquerol, J. Rouquerol, K. Sing, Chapter 1 - Introduction, In: F. Rouquerol, J. Rouquerol, K. Sing (Eds.), Adsorption. by Powders Porous Solids, Academic Press, London, 1999: pp. 1–26. doi: https://doi.org/10.1016/B978-012598920-6/50002-6.

D.M. Ruthven, Principles of adsorption and ad-sorption processes, Wiley, 1984. https://books. google.co.jp/books?id=u7wq21njR3UC.

C. Lehmann, S. Beckert, T. Nonnen, R. Gläser, O. Kolditz, T. Nagel, Water loading lift and heat stor-age density prediction of adsorption heat storage systems using Dubinin-Polanyi theory—Comparison with experimental results, Appl. Ener-gy. 207 (2017) 274. doi:10.1016/j.apenergy.2017.07.008.

C. Lehmann, S. Beckert, R. Gläser, O. Kolditz, T. Nagel, Appl. Energy. 185 (2017) 1965. doi:10.1016/j.apenergy.2015.10.126.

G. Engel, S. Asenbeck, R. Köll, H. Kerskes, W. Wagner, W. van Helden, J. Energy Storage. 13 (2017) 40. doi:10.1016/J.EST.2017.06.001.

K. Lim, J. Che, J. Lee, Appl. Therm. Eng. 110 (2017) 80. doi:10.1016/j.applthermaleng.2016.08.098.

M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Int. J. Heat Mass Transf. 122 (2018) 795. doi:10.1016/j.ijheatmasstransfer.2018.01.107.

B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, S. Koyama, N.D. Banker, P. Dutta, M. Prasad, K. Srinivasan, Int. J. Refrig. 29 (2006) 1175. doi:10.1016/j.ijrefrig.2006.01.005.

B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, S. Koyama, K.C. Ng, Study on single-and multi-stage adsorption cooling cycles working at sub and above atmospheric conditions, in: 2008 ASME Int. Mech. Eng. Congr. Expo. IMECE 2008, Bos-ton, MA, 2009: pp. 563–570. doi:10.1115/imece 2008-68616.

Y.I. Aristov, M.M. Tokarev, V.E. Sharonov, Chem. Eng. Sci. 63 (2008) 2907. doi:10.1016/ j.ces.2008.03.011.

R.E. Critoph, Sol. Energy. 41 (1988) 21. http: //www.scopus.com/inward/record.url?eid=2-s2.0-0023863493&partnerID=40&md5=5033b491f06746306cc9a6cba24b9a68.

M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Int. J. Heat Mass Transf. 122 (2018) 795. doi:10.1016/j.ijheatmasstransfer.2018.01.107.

A. Hauer, Sorption theory for thermal energy stor-age, in: Therm. Energy Storage Sustain. Energy Consum., Springer Netherlands, Dordrecht, 2007: pp. 393–408. doi:10.1007/978-1-4020-5290-3_24.

A. Hauer, Evaluation of adsorbent materials for heat pump and thermal energy storage applica-tions in open systems, in: Adsorption, 2007: pp. 399–405. doi:10.1007/s10450-007-9054-0.

S.P. Casey, D. Aydin, S. Riffat, J. Elvins, Energy Build. 92 (2015) 128. doi:10.1016/j.enbuild. 2015.01.048.

H. Deshmukh, M.P. Maiya, S. Srinivasa Murthy, Appl. Therm. Eng. 111 (2017) 1640. doi:10.1016/ j.applthermaleng.2016.07.069.

H. Zondag, B. Kikkert, S. Smeding, R. de Boer, M. Bakker, Appl. Energy. 109 (2013) 360. doi:10.1016/j.apenergy.2013.01.082.

B. Mette, H. Kerskes, H. Drück, H. Müller-Steinhagen, Appl. Energy. 109 (2013) 352. doi:10.1016/j.apenergy.2013.01.087.

S. Maeda, K. Thu, T. Maruyama, T. Miyazaki, S. Maeda, K. Thu, T. Maruyama, T. Miyazaki, Appl. Sci. 8 (2018) 2061. doi:10.3390/APP8112061.

K. Thu, Y.-D. Kim, A. Bin Ismil, B.B. Saha, K.C. Ng, Appl. Therm. Eng. 72 (2014) 200. doi:10.1016/j.applthermaleng.2014.04.076.

K. Thu, N. Takeda, T. Miyazaki, B.B. Saha, S. Koyama, T. Maruyama, S. Maeda, T. Kawamata, Int. J. Refrig. (2018) In Press. doi:10.1016/ j.ijrefrig. 2018.06.009.

M. Ghazy, K. Harby, A.A. Askalany, B.B. Saha, Int. J. Refrig. 70 (2016) 196. doi:10.1016/j.ijrefrig. 2016.01.012.

S. Jribi, T. Miyazaki, B.B. Saha, A. Pal, M.M. Younes, S. Koyama, A. Maalej, Int. J. Heat Mass Transf. 108 (2017) 1941. doi:10.1016/ j.ijheatmasstransfer.2016.12.114.

W.S. Loh, K.A. Rahman, A. Chakraborty, B.B. Saha, Y.S. Choo, B.C. Khoo, K.C. Ng, J. Chem. Eng. Data. 55 (2010) 2840. doi:10.1021/je901011c.

A. Bin Ismail, A. Li, K. Thu, K.C. Ng, W. Chun, Appl. Therm. Eng. 67 (2014) 106. doi:10.1016/j.applthermaleng.2014.02.063.

A. Chakraborty, K.C. Leong, K. Thu, B.B. Saha, K.C. Ng, Appl. Phys. Lett. 98 (2011) 221910. doi:10.1063/1.3592260.

A. Frazzica, Renew. Energy. 110 (2017) 87–94. doi:10.1016/J.RENENE.2016.09.047.

F.H.M. Azahar, S. Mitra, A. Yabushita, A. Harata, B.B. Saha, K. Thu, Appl. Therm. Eng. 143 (2018) 688. doi:10.1016/j.applthermaleng.2018. 07.131.

M.S. Fernandes, G.J.V.N. Brites, J.J. Costa, A.R. Gaspar, V.A.F. Costa, Energy. 102 (2016) 83. doi:10.1016/j.energy.2016.02.014.

D. Dicaire, F.H. Tezel, Int. J. Energy Res. 37 (2013) 1059. doi:10.1002/er.2913.

H. Liu, K. Nagano, Int. J. Heat Mass Transf. 78 (2014) 648. doi:10.1016/j.ijheatmasstrans fer. 2014.07.034.

H. Wu, S. Wang, D. Zhu, Y. Ding, Int. J. Heat Mass Transf. 52 (2009) 5262. doi:10.1016/ j.ijheatmasstransfer.2009.05.016.

T. Nagel, S. Beckert, C. Lehmann, R. Gläser, O. Kolditz, Appl. Energy. 178 (2016) 323. doi:10.1016/j.apenergy.2016.06.051.

P. Gantenbein, S. Brunold, F. Flückiger, U. Frei, Sorbtion materials for application in solar heat en-ergy storage, 2001. http://www.solarenergy.ch/ fileadmin/daten/publ/sorption01.pdf (accessed October 19, 2018).

S.P. Casey, D. Aydin, J. Elvins, S. Riffat, Energy Convers. Manag. 142 (2017) 426. doi:10.1016/ j.enconman.2017.03.066.

K. Johannes, F. Kuznik, J.-L. Hubert, F. Durier, C. Obrecht, Appl. Energy. 159 (2015) 80. doi:10.1016/ j.apenergy.2015.08.109.

P. Tatsidjodoung, N. Le Pierrès, J. Heintz, D. Lagre, L. Luo, F. Durier, Energy Convers. Manag. 108 (2016) 488. doi:10.1016/j.enconman.2015. 11.011.

D. Zhu, H. Wu, S. Wang, Int. J. Therm. Sci. 45 (2006) 804. doi:10.1016/j.ijthermalsci.2005.10.009.

R. van Alebeek, L. Scapino, M.A.J.M. Beving, M. Gaeini, C.C.M. Rindt, H.A. Zondag, Appl. Therm. Eng. 139 (2018) 325. doi:10.1016/j.applther maleng.2018.04.092.

Y.N. Zhang, R.Z. Wang, T.X. Li, Energy. 141 (2017) 2421. doi:10.1016/j.energy.2017.12.003.

M. Gaeini, M.R. Javed, H. Ouwerkerk, H.A. Zondag, C.C.M. Rindt, Energy Procedia. 135 (2017) 105. doi:10.1016/j.egypro.2017.09.491.

M. Gaeini, H.A. Zondag, C.C.M. Rindt, Appl. Therm. Eng. 102 (2016) 520. doi:10.1016/j.appl thermaleng.2016.03.055.

M. Gaeini, R. Wind, P.A.J. Donkers, H.A. Zondag, C.C.M. Rindt, Int. J. Heat Mass Transf. 113 (2017) 1116. doi:10.1016/j.ijheatmasstransfer.2017.06.034.

S. Mitra, M. Muttakin, K. Thu, B.B. Saha, Appl. Therm. Eng. 133 (2018) 764. doi:10.1016/ j.applthermaleng.2018.01.015.

S. Jribi, T. Miyazaki, B.B. Saha, S. Koyama, S. Maeda, T. Maruyama, Int. J. Refrig. 74 (2017) 345. doi:https://doi.org/10.1016/j.ijrefrig.2016.10.019.

S. Ergun, A.A. Orning, Ind. Eng. Chem. 41 (1949) 1179. doi:10.1021/ie50474a011.

D. Lefebvre, P. Amyot, B. Ugur, F.H. Tezel, Ind. Eng. Chem. Res. 55 (2016) 4760. doi:10.1021/ acs.iecr.5b04767.

Y.-D.D. Kim, K. Thu, N. Ghaffour, K. Choon Ng, J. Memb. Sci. 427 (2013) 345. doi:10.1016/ j.memsci.2012.10.008.

Y.-D. Kim, K. Thu, H.K. Bhatia, C.S. Bhatia, K.C. Ng, Sol. Energy. 86 (2012) 1378. doi:10.1016/ j.solener.2012.01.030.

K.C. Ng, K. Thu, Y. Kim, A. Chakraborty, G. Amy, Desalination. 308 (2013) 161. doi:10.1016/ j.desal.2012.07.030.

M.S. Fernandes, G.J.V.N. Brites, J.J. Costa, A.R. Gaspar, V.A.F. Costa, Energy Convers. Manag. 126 (2016) 548. doi:10.1016/j.enconman.2016. 08.032.

M. Duquesne, J. Toutain, A. Sempey, S. Ginestet, E. Palomo del Barrio, Appl. Therm. Eng. 71 (2014) 469. doi:10.1016/j.applthermaleng.2014. 07.00.

B. Dawoud, E.-H. Amer, D.-M. Gross, Int. J. Ener-gy Res. 31 (2007) 135. doi:10.1002/er.1235.

H. Schreiber, F. Lanzerath, C. Reinert, C. Grüntgens, A. Bardow, Appl. Therm. Eng. 106 (2016) 981. doi:10.1016/j.applthermaleng.2016.06.05.

H. Schreiber, F. Lanzerath, A. Bardow, Appl. Therm. Eng. 141 (2018) 548. doi:10.1016/ j.applthermaleng.2018.05.09.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.