English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 448-462 DOI: 10.7536/PC170830 前一篇   

• 综述 •

纳米纤维素的制备及产业化

杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠   

  1. 中国科学院青岛生物能源与过程研究所 中国科学院生物基材料重点实验室 青岛 266101
  • 收稿日期:2017-08-28 修回日期:2017-10-24 出版日期:2018-04-15 发布日期:2018-01-30
  • 通讯作者: 李滨 E-mail:libin@qibebt.ac.cn
  • 基金资助:
    国家十二五科技支撑计划(No.2015BAD14B06)、国家自然科学基金项目(No.31470609,31700509)和山东省重点研发计划(No.2016CYJS07A02)资助

Preparation and Industrialization Status of Nanocellulose

Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian   

  1. CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
  • Received:2017-08-28 Revised:2017-10-24 Online:2018-04-15 Published:2018-01-30
  • Supported by:
    The work was supported by National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (No. 2015BAD14B06),the National Natural Science Foundation of China (No. 31470609, 31700509), and the Primary Research and Development Plan of Shandong Province (No. 2016CYJS07A02).
纳米纤维素因其独特的结构及优越的性能引起了学术和企业界的广泛关注与重视,日渐成为新材料和纤维素科学领域的研究热点。以木质纤维资源为原料,可分离出两种主要类型的纳米纤维素:纤维素纳米晶体(CNC)和纤维素纳米纤丝(CNF)。本文详细综述了CNC和CNF的制备方法,着重介绍了近几年新兴的制备方法,包括可回收的有机酸水解法综合制备CNC和CNF,美国高附加值制浆(AVAP)法制备木质素包覆的CNC和CNF,低共熔溶剂预处理结合机械剪切高效制备CNC和CNF,以及微极性环境下可调控机械剥离制备亲疏水性CNF等。同时,讨论了各种制备方法的优缺点,并介绍了国内外纳米纤维素的产业化研究进展。最后,我们提出纳米纤维素的制备方法未来将朝着绿色、高效和可持续的方向发展。
Nanocellulose is drawing extensive concern and attention from the academic and industrial circles due to its unique structure and exceptional properties, and it is the research hotspot in the field of new material and cellulose science. Nanocellulose isolated from lignocellulosic biomass can be divided into two main categories: cellulose nanocrystal (CNC) and cellulose nanofibril (CNF). The preparation methods of CNC and CNF are detailedly summarized in this review, with the focus on some new methods developed in recent years, such as the integrated preparation of CNC and CNF via recoverable organic acid hydrolysis, tuneable preparation of lignin-coated CNC and CNF via AVAP method, high efficiency preparation of CNC and CNF via deep eutectic solvents pretreatment combined with mechanical shearing, as well as the controllable isolation of hydrophilic or hydrophobic CNF by mechanical disintegration in polar microenvironment. Meanwhile, the advantages and shortcomings of the preparation methods are discussed, and the industrialization status of nanocellulose production is introduced as well. Finally, it’s believed that the development of green, effective and sustainable preparation methods will be the main trend for manufacturing nanocellulose.
Contents
1 Introduction
2 Preparation of CNC
2.1 Oxidative degradation
2.2 Ionic liquid treatment
2.3 Solid acid hydrolysis
2.4 Organic acid hydrolysis
2.5 Subcritical water hydrolysis
2.6 AVAP method
3 Preparation of CNF
3.1 Mechanical methods
3.2 Pretreatment methods
4 Industrialization status of nanocellulose
5 Conclusion

中图分类号: 

()
[1] Sticklen M B. Nat. Rev. Genet., 2008, 9(6):433.
[2] Klemm D, Heublein B, Fink H P, Bohn A. Angew. Chem. Int. Ed., 2005, 44(22):3358.
[3] 张金明(Zhang J J), 张军(Zhang J). 高分子学报(Acta Polymerica Sinica), 2012, (12):1376.
[4] Seppala J V. Express Polym. Lett., 2012, 6(4):257.
[5] Song J K, Tang A M, Liu T T, Wang J F. Nanoscale, 2013, 5(6):2482.
[6] Lavoine N, Bergstrom L. J. Mater. Chem., 2017, 5(31):16105.
[7] Laitinen O, Suopajarvi T, Osterberg M, Liimatainen H. ACS Appl. Mater. Interfaces, 2017, 9(29):25029.
[8] Ye C H, Malak S T, Hu K S, Wu W B, Tsukruk V V. ACS Nano, 2015, 9(11):10887.
[9] Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandia C, Makitie A, Partanen J, Ikkala O, Yliperttula M. Biomaterials, 2016, 82:208.
[10] Herrera M A, Mathew A P, Oksman K. Cellulose, 2017, 24(9):3969.
[11] Azeredo H M C, Rosa M F, Mattoso L H C. Ind. Crops Prod., 2017, 97:664.
[12] Moreau C, Villares A, Capron I, Cathala B. Ind. Crops Prod., 2016, 93:96.
[13] Oksman K, Aitomäki Y, Mathew A P, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X J, Hooshmand S. Compos. Part A:Appl. S., 2016, 83:18.
[14] Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50(24):5438.
[15] Hoeng F, Denneulin A, Bras J. Nanoscale, 2016, 27(8):13131.
[16] Zhu H L, Luo W, Ciesielski P N, Fang Z Q, Zhu J Y, Henriksson G, Himmel M E, Hu L B. Chem. Rev., 2016, 116(16):9305.
[17] Brinchi L, Cotana F, Fortunati E, Kenny J M. Carbohydr. Polym., 2013, 94(1):154.
[18] Nechyporchuk O, Belgacem M N, Bras J. Ind. Crops Prod., 2016, 93:2.
[19] 汪丽粉(Wang L F), 李政(Li Z), 贾士儒(Jia S R), 张健飞(Zhang J F). 微生物学通报(Microbiology China), 2014, 41(8):1675.
[20] 叶代勇(Ye D Y). 化学进展(Progress in Chemistry), 2007, 19(10):1568.
[21] 郭娟丽(Guo J L), 周玉生(Zhou Y S), 刘珊(Liu S), 刘建辉(Liu J H), 周明吉(Zhou M J). 科技导报(Science & Technology Review), 2014, 28:26.
[22] Trache D, Hussin M H, Haafiz M K, Thakur V K. Nanoscale, 2017, 9(5):1763.
[23] Siqueira G, Bras J, Dufresne A. Polymers, 2010, 2(4):728.
[24] Nickerson R, Habrle J. Ind. Eng. Chem., 1947, 39:1507.
[25] Yu H Y, Qin Z Y, Liang B L, Liu N, Zhou Z, Chen L. J. Mater. Chem., 2013, 1(12):3938.
[26] Kontturi E, Meriluoto A, Penttila P A, Baccile N, Malho J M, Potthast A, Rosenau T, Ruokolainen J, Serimaa R, Laine J, Sixta H. Angew. Chem. Int. Ed., 2016, 55(46):14455.
[27] Camarero Espinosa S, Kuhnt T, Foster E J, Weder C. Biomacromolecules, 2013, 14(4):1223.
[28] Li Y, Li G Z, Zou Y L, Zhou Q J, Lian X X. Cellulose, 2013, 21(1):301.
[29] Cheng M, Qin Z Y, Chen Y Y, Liu J M, Ren Z C. Cellulose, 2017, 24(8):3243.
[30] Filson P B, Dawson-Andoh B E, Schwegler-Berry D. Green Chem., 2009, 11(11):1808.
[31] 李伟(Li W), 王锐(Wang R), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2010, 22(10):2060.
[32] Lagerwall J P F, Schütz C, Salajkova M, Noh J, Hyun-Park J, Scalia G, Bergström L. NPG Asia Mater., 2014, 6(1):e80.
[33] 代林林(Dai L L), 李伟(Li W), 曹军(Cao J), 李坚(Li J), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2015, 27(7):861.
[34] Cheng S L, Zhang Y P, Cha R T, Yang J L, Jiang X Y. Nanoscale, 2015, 8(2):973.
[35] Wang Q, Zhao X, Zhu J Y. Ind. Eng. Chem. Res., 2014, 53(27):11007.
[36] Leung A C, Hrapovic S, Lam E, Liu Y, Male K B, Mahmoud K A, Luong J H. Small, 2011, 7(3):302.
[37] Miao J J, Yu Y Q, Jiang Z M, Zhang L P. Cellulose, 2016, 23(2):1209.
[38] Liu Y F, Wang H S, Yu G, Yu Q X, Li B, Mu X D. Carbohydr. Polym., 2014, 110:415.
[39] Du H S, Liu C, Mu X D, Gong W B, Lv D, Hong Y M, Si C L, Li B. Cellulose, 2016, 23(4):2389.
[40] Novo L P, Bras J, Garcia A, Belgacem N, Curvelo A A S. ACS Sustainable Chem. Eng., 2015, 3(11):2839.
[41] Nelson K, Retsina T, Iakovlev M, van-Heiningen A, Deng Y, Shatkin J A, Mulyadi A. "American Process:Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications," in:Materials Research for Manufacturing:An Industrial Perspective of Turning Materials into New Products. Madsen L D and Svedberg E B (Eds.), Springer Ser. Mater. Sci., 2016, 224:267.
[42] 刘颖(Liu Y), 任学宏(Ren X H). 材料导报(Materials Review), 2015, 29(11):133.
[43] Yang H, Alam M N, van de Ven T G M. Cellulose, 2013, 20(4):1865.
[44] Hu Y, Tang L R, Lu Q L, Wang S Q, Chen X R, Huang B. Cellulose, 2014, 21(3):1611.
[45] Cheng M, Qin Z Y, Liu Y N, Qin Y F, Li T, Chen L, Zhu M F. J. Mater. Chem. A, 2014, 2(1):251.
[46] Earle M J, Seddon K R. ChemInform, 2002, 819:10.
[47] Man Z, Muhammad N, Sarwono A, Bustam M A, Vignesh Kumar M, Rafiq S. J. Polym. Environ., 2011, 19(3):726.
[48] Mao J, Osorio-Madrazo A, Laborie M P. Cellulose, 2013, 20(4):1829.
[49] Mao J, Heck B, Reiter G, Laborie M P. Carbohydr. Polym., 2015, 117:443.
[50] Lazko J, Sénéchal T, Landercy N, Dangreau L, Raquez J M, Dubois P. Cellulose, 2014, 21(6):4195.
[51] Abushammala H, Krossing I, Laborie M P. Carbohydr. Polym., 2015, 134:609.
[52] Tang L R, Huang B, Ou W, Chen X R, Chen Y D. Bioresour. Technol., 2011, 102(23):10973.
[53] Lu Q L, Cai Z H, Lin F C, Tang L R, Wang S Q, Huang B. ACS Sustainable Chem. Eng., 2016, 4(4):2165.
[54] Torlopov M A, Udoratina E V, Martakov I S, Sitnikov P A. Cellulose, 2017, 24(5):2153.
[55] Li B, Xu W Y, Kronlund D, Maattanen A, Liu J, Smatt J H, Peltonen J, Willfor S, Mu X D, Xu C L. Carbohydr. Polym., 2015, 133:605.
[56] Liu C, Li B, Du H S, Lv D, Zhang Y D, Yu G, Mu X D, Peng H. Carbohydr. Polym., 2016, 151:716.
[57] Du H S, Liu C, Wang D, Zhang Y D, Yu G, Si C L, Li B, Mu X D, Peng H. J. Bioresour. Bioprod., 2017, 2(1):10.
[58] Chen L H, Zhu J Y, Baez C, Kitin P, Elder T. Green Chem., 2016, 18(13):3835.
[59] Jia C, Chen L H, Shao Z Q, Agarwal U P, Hu L B, Zhu J Y. Cellulose, 2017, 24(6):2483.
[60] Bian H Y, Chen L H, Dai H Q, Zhu J Y. Carbohydr. Polym., 2017, 167:167.
[61] Xu W Y, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C L. ChemNanoMat, 2017, 3(2):109.
[62] Novo L P, Bras J, García A, Belgacem N, Curvelo A A D S. Ind. Crops Prod., 2016, 93:88.
[63] Nelson K, Retsina T. Tappi J., 2014, 13(5):19.
[64] Turbak A F, Snyder F W, Sandberg K R. Appl. Polym. Symp., 1983, 815.
[65] Herrick F W, Casebier R L, Hamilton J K, Sandberg K R. Appl. Polym. Symp., 1983:797.
[66] Zimmermann T, Pohler E, Geiger T. Adv. Eng. Mater., 2004, 6(9):754.
[67] Qing Y, Sabo R, Zhu J Y, Agarwal U, Cai Z Y, Wu Y Q. Carbohydr. Polym., 2013, 97(1):226.
[68] Carrillo C A, Laine J, Rojas O J. ACS Appl. Mater. Interfaces, 2014, 6(24):22622.
[69] Taniguchi T, Okamura K. Polym. Int., 1998, 47(3):291.
[70] Hu C S, Zhao Y, Li K C, Zhu J Y, Gleisner R. Holzforschung, 2015, 69(8):993.
[71] Chen W S, Yu H P, Liu Y X. Carbohydr. Polym., 2011, 86(2):453.
[72] Chen W S, Yu H P, Liu Y X, Hai Y F, Zhang M X, Chen P. Cellulose, 2011, 18(2):433.
[73] Alemdar A, Sain M. Bioresour. Technol., 2008, 99(6):1664.
[74] Chakraborty A, Sain M, Kortschot M. Holzforschung, 2005, 59(1):102.
[75] Tian X F, Lu P, Song X P, Nie S X, Liu Y, Liu M Y, Wang Z W. Cellulose, 2017, 24(9):3929.
[76] Tarrés Q, Oliver-Ortega H, Llop M, Pèlach M À, Delgado-Aguilar M, Mutjé P. Cellulose, 2016, 23(5):3077.
[77] Rol F, Karakashov B, Nechyporchuk O, Terrien M, Meyer V, Dufresne A, Belgacem M N, Bras J. ACS Sustainable Chem. Eng., 2017, 5(8):6524.
[78] Ho T T T, Abe K, Zimmermann T, Yano H. Cellulose, 2014, 22(1):421.
[79] Uetani K, Yano H. Biomacromolecules, 2011, 12(2):348.
[80] Chaker A, Alila S, Mutjé P, Vilar M R, Boufi S. Cellulose, 2013, 20(6):2863.
[81] Manhas N, Balasubramanian K, Prajith P, Rule P, Nimje S. RSC Adv., 2015, 5(31):23999.
[82] Mohd Amin K N, Annamalai P K, Morrow I C, Martin D. RSC Adv., 2015, 5(70):57133.
[83] Zhang L Y, Tsuzuki T, Wang X G. Cellulose, 2015, 22(3):1729.
[84] Kondo T, Kose R, Naito H, Kasai W. Carbohydr. Polym., 2014, 112:284.
[85] Hsieh M C, Koga H, Suganuma K, Nogi M. Sci. Rep., 2017, 7:41590.
[86] Eriksen O, Syverud K, Gregersen O. Nord. Pulp Pap. Res. J., 2008, 23(3):299.
[87] Wang Q Q, Zhu J Y, Gleisner R, Kuster T A, Baxa U, McNeil S E. Cellulose, 2012, 19(5):1631.
[88] Du H S, Liu C, Zhang Y D, Yu G, Si C L, Li B. Ind. Crops Prod., 2016, 94:736.
[89] Henriksson M, Henriksson G, Berglund L A, Lindström T. Eur. Polym. J., 2007, 43(8):3434.
[90] Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson P T, Ikkala O, Lindstrom T. Biomacromolecules, 2007, 8(6):1934.
[91] Wang W, Mozuch M D, Sabo R C, Kersten P, Zhu J Y, Jin Y. Cellulose, 2016, 23(3):1859.
[92] Saito T, Nishiyama Y, Putaux J L, Vignon M, Isogai A. Biomacromolecules, 2006, 7(6):1687.
[93] Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A. Biomacromolecules, 2009, 10(1):162.
[94] Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3(1):71.
[95] Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K. Cellulose, 2009, 17(1):19.
[96] Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T. J. Appl. Polym. Sci., 2011, 119(5):2652.
[97] Naderi A, Lindström T, Sundström J. Cellulose, 2014, 21(3):1561.
[98] Ho T T T, Zimmermann T, Hauert R, Caseri W. Cellulose, 2011, 18(6):1391.
[99] Chaker A, Boufi S. Carbohydr. Polym., 2015, 131:224.
[100] Saini S, Yücel Falco Ç, Belgacem M N, Bras J. Carbohydr. Polym., 2016, 135:239.
[101] Lee S Y, Chun S J, Kang I A, Park J Y. J. Ind. Eng. Chem., 2009, 15(1):50.
[102] Bharimalla A K, Deshmukh S P, Patil P G, Vigneshwaran N. World J. Nano Sci. Eng., 2015, 5(4):204.
[103] 周素坤(Zhou S K), 毛健贞(Mao J Z), 许凤(Xu F). 化学进展(Progress in Chemistry), 2014, 26(10):1752.
[104] Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J. Cellulose, 2010, 17(5):1005.
[105] Wang R B, Chen L H, Zhu J Y, Yang R D. ChemNanoMat, 2017, 3(5):328.
[106] Bian H Y, Chen L H, Gleisner R, Dai H Q, Zhu J Y. Green Chem., 2017, 19(14):3370.
[107] Chen L H, Dou J Z, Ma Q L, Li N, Wu R C, Bian H Y, Yelle D J, Vuorinen T, Fu S Y, Pan X J, Zhu J Y. Sci. Adv., 2017, 3(9):e1701735.
[108] Liimatainen H, Visanko M, Sirviö J A, Hormi O E O, Niinimaki J. Biomacromolecules, 2012, 13(5):1592.
[109] Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki J. Cellulose, 2013, 20(2):741.
[110] Liimatainen H, Sirviö J, Pajari H, Hormi O, Niinimäki J. J. Wood Chem. Technol., 2013, 33(4):258.
[111] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, (1):70.
[112] Loow Y L, New E K, Yang G H, Ang L Y, Foo L Y W, Wu T Y. Cellulose, 2017, 24(9):3591.
[113] Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy K K, Wolcott M, Zhang X. Green Chem., 2016, 18(19):5133.
[114] Procentese A, Johnson E, Orr V, Garruto Campanile A, Wood J A, Marzocchella A, Rehmann L. Bioresour. Technol., 2015, 192:31.
[115] Qin Y Z, Li Y M, Zong M H, Wu H, Li N. Green Chem., 2015, 17(7):3718.
[116] Tang X, Zuo M, Li Z, Liu H, Xiong C X, Zeng X H, Sun Y, Hu L, Liu S J, Lei T Z, Lin L. ChemSusChem, 2017, 10(13):2696.
[117] Sirviö J A, Visanko M, Liimatainen H. Green Chem., 2015, 17(6):3401.
[118] Selkala T, Sirviö J A, Lorite G S, Liimatainen H. ChemSusChem, 2016, 21(9):3074.
[119] Sirviö J A, Visanko M, Liimatainen H. Biomacromolecules, 2016, 17(9):3025.
[120] Laitinen O, Ojala J, Sirviö J A, Liimatainen H. Cellulose, 2017, 24(4):1679.
[121] Liu Y Z, Guo B T, Xia Q Q, Meng J, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. ACS Sustainable Chem. Eng., 2017, 5(9):7623.
[122] Huang P, Wu M, Kuga S, Wang D Q, Wu D Y, Huang Y. ChemSusChem, 2012, 5(12):2319.
[123] Huang P, Wu M, Kuga S, Huang Y. Cellulose, 2013, 20(4):2175.
[124] Huang P, Zhao Y, Kuga S, Wu M, Huang Y. Nanoscale, 2016, 8(6):3753.
[125] Zhao M M, Kuga S, Jiang S D, Wu M, Huang Y. Cellulose, 2016, 23(5):2809.
[126] Zhao M M, Kuga S, Wu M, Huang Y. Green Chem., 2016, 18(10):3006.
[127] 王超(Wang C), 赵猛猛(Zhao M M), 黄培(Huang P), 饶显孟(Rao X M), 吴敏(Wu M), 黄勇(Huang Y). 高分子学报(Acta Polymerica Sinica), 2017, (9):1415.
[128] Shen J, He Z B, Xiao H N. J. Bioresour. Bioprod., 2017, 2(3):93.
[129] An X Y, Cheng D, Shen J, Jia Q M, He Z B, Zheng L Q, Khan A, Sun B, Ni Y H, Xiong B T. J. Bioresour. Bioprod., 2017, 2(2):45.
[130] Miller J. Cellulose nanomaterials production-state of the industry,December, 2015.[2017-07].http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industry-dec-2015.pdf.
[131] CelluForce Inc.[2017-07].http://www.celluforce.com/en/technology/
[132] Nelson K, Retsina T, Pylkkanen V, Iakovlev M, van Heiningen A. AIChE Annual Meeting, 2013.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
阅读次数
全文


摘要

纳米纤维素的制备及产业化