THE INFLUENCE OF EXTREME EVENTS ON HYDRODYNAMICS AND SALINITIES IN THE WESER ESTUARY IN THE CONTEXT OF CLIMATE IMPACT RESEARCH
ICCE 2012 Cover Image
PDF

Supplementary Files

Article for proceedings

Keywords

climate impact research
estuary modeling
salinity intrusion
storm events
Weser

How to Cite

Zorndt, A. C., Schlurmann, T., & Grabemann, I. (2012). THE INFLUENCE OF EXTREME EVENTS ON HYDRODYNAMICS AND SALINITIES IN THE WESER ESTUARY IN THE CONTEXT OF CLIMATE IMPACT RESEARCH. Coastal Engineering Proceedings, 1(33), currents.50. https://doi.org/10.9753/icce.v33.currents.50

Abstract

The salinity and its longitudinal distribution in the Weser estuary, Germany, has implications for water management as the estuarine water is needed, e.g., for irrigation of the agricultural used hinterlands and as industrial water and because of its intrusion into groundwater. Generally, the salinity distribution is determined by tidal dynamics, river runoff from the catchment area, amount of intruding seawater from the German Bight (North Sea) as well as by the salinities of both river and seawater. Anthropogenic climate change may have an impact on the estuarine dynamics and, thus, on the salinity distribution. This study focuses on the impact of storm surges. A semi-implicit Eulerian-Lagrangian finite element model was used to simulate hydrodynamics and salinities in the estuary. By comparing simulated and observed data of two past storm surges it is shown that the model is well capable of reproducing estuarine dynamics. Possible future changes due to climate change are investigated for three scenario- based storm surges; two of them represent future storm conditions and one specifies reference (today's) conditions for comparison. These storm surges were simulated using boundary conditions from water level simulations with a hydrodynamic model for the North Sea together with the respective meteorological forcing. It can be shown that during storm tides, isohalines penetrate more than 30 km further upstream than during normal conditions. For the most severe scenario-based storm surge, this leads to a salinity increase of up to 30 psu within the mixing zone during the highest storm tide.
https://doi.org/10.9753/icce.v33.currents.50
PDF

References

Bilgili, A., K. W. Smith, and D. R. Lyncha. 2006. BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling, Computers & Geosciences, 32, 632-642.http://dx.doi.org/10.1016/j.cageo.2005.09.007

Gaslikova, L., I. Grabemann, and N. Groll. 2012. Changes in north sea storm surge conditions for four transient future climate realizations, Natural Hazards, 1-18.

Grabemann, I., G. Krause, and G. Siedler. 1983. Langzeitliche A¨ nderung des Salzgehaltes in der Unterweser, Deutsche Hydrographische Zeitschrift, 36, 61-77.http://dx.doi.org/10.1007/BF02313285

Jungclaus, J., N. Keenlyside, M. Botzet, H. Haak, J.-J. Luo, M. Latif, J. Marotzke, U. Mikolajewicz, and E. Roeckner. 2006. Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM, Journal of Climate - Special Section, 19, 3952-3972.

Niemeyer, H. D. and R. Kaiser. 2012. Evaluation alternativer K¨ustenschutzstrategien in Niedersachsen, Wasser und Abfall, 7-8, 21-26.

Rockel, B. and B. Geyer. 2008. The performance of the regional climate model CLM in different climate regions, based on the example of precipitation, Meterologische Zeitschrift, 17(4), 487-498.http://dx.doi.org/10.1127/0941-2948/2008/0297

Shewchuk, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, Applied Computational Geometry: Towards Geometric Engineering, 1148, 203-222.http://dx.doi.org/10.1007/BFb0014497

Spekker, H. 2008. Steuerung von K¨ustenschutzelementen an Tidefl¨ussen als Grundlage f¨ur ein Hochwasser- und Risikomanagement. Ph. D. thesis, Universit¨at Hannover.

Willmott, C. J. 1981. On the validation of models, Physical Geography, 2, 184-194.

Zhang, Y. and A. M. Baptista. 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation, Ocean Modelling, 21, 71-96.http://dx.doi.org/10.1016/j.ocemod.2007.11.005

Zhang, Y., R. C. Witter, and G. R. Priest. 2011. Tsunami-tide interaction in 1964 Prince William Sound tsunami, Ocean Modelling, 40, 246-259.http://dx.doi.org/10.1016/j.ocemod.2011.09.005

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.