Skip to main content
Log in

Dislocation Microstructures and the Effective Behavior of Single Crystals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We consider single-crystal plasticity in the limiting case of infinite latent hardening, which signifies that the crystal must deform in single slip at all material points. This requirement introduces a nonconvex constraint, and thereby induces the formation of fine-scale structures. We restrict attention throughout to linearized kinematics and deformation theory of plasticity, which is appropriate for monotonic proportional loading and confers the boundary value problem of plasticity a well-defined variational structure analogous to elasticity.

We first study a scale-invariant (local) problem. We show that, by developing microstructures in the form of sequential laminates of finite depth, crystals can beat the single-slip constraint, i.e., the macroscopic (relaxed) constitutive behavior is indistinguishable from multislip ideal plasticity. In a second step, we include dislocation line energies, and hence a length scale, into the model. Different regimes lead to several possible types of microstructure patterns. We present constructions which achieve the various optimal scaling laws, and discuss the relation with experimentally known scalings, such as the Hall-Petch law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)

    Google Scholar 

  2. Anzellotti, G., Giaquinta, M.: Existence of the displacements field for an elasto-plastic body subject to Hencky’s law and von Mises yield condition. Manuscripta Math. 32, 101–136 (1980)

    Google Scholar 

  3. Anzellotti, G., Giaquinta, M.: On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body in static equilibrium. J. Math. Pures Appl. 61, 219–244 (1982)

    Google Scholar 

  4. Aubry, S., Ortiz, M.: The mechanics of deformation-induced subgrain dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond. A 459, 3131–3158 (2003)

    Google Scholar 

  5. Bassani, J.L., Wu, T.Y.: Latent hardening in single crystals, 2, analytical characterization and predictions. Proc. Roy. Soc. London A 435, 21–41 (1991)

    Google Scholar 

  6. Bassim, M.N., Klassen, R.J.: Variation in dislocation cell size with local strain in a low alloy steel. Mat. Sci. Eng. 81, 163–167 (1986)

    Google Scholar 

  7. Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films. Arch. Ration. Mech. Anal. 164, 1–37 (2002)

    Google Scholar 

  8. Braides, A., Defranceschi, A.: Homogenization of multiple integrals. Claredon Press, Oxford, 1998

  9. Braides, A., Defranceschi, A., Vitali, E.: A relaxation approach to Hencky’s plasticity. Appl. Math. Optim. 35, 45–68 (1997)

    Google Scholar 

  10. Choksi, R., Kohn, R.V.: Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51, 259–289 (1998)

    Google Scholar 

  11. Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201, 61–79 (1999)

    Google Scholar 

  12. Choksi, R., Kohn, R.V., Otto, F.: Energy minimization and flux domain structure in the intermediate state of a type-I superconductor. J. Nonlinear Sci. 14, 119–171 (2004)

    Google Scholar 

  13. Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Comm. Pure Appl. Math. 53, 1448–1474 (2000)

    Google Scholar 

  14. Conti, S., Faraco, D., Maggi, F.: A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions. MPI-MIS Preprint 93/2003. To appear in Arch. Ration. Mech. Anal. 175, 287–300 (2005)

  15. Dal Maso, G.: An introduction to Γ-convergence. Birkhäuser, Boston, 1993

  16. Franciosi, P., Berveiller, M., Zaoui, A.: Latent hardening in copper and aluminium single crystals. Acta Metall. 28, 273–283 (1980)

    Google Scholar 

  17. Franciosi, P., Zaoui, A.: Glide mechanisms in bcc crystals: An investigation of the case of α-iron through multislip and latent hardening tests. Acta Metall. 31, 1331 (1983)

    Google Scholar 

  18. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Google Scholar 

  19. Grosskreutz, J.C., Mughrabi, H.: Description of the Work-Hardened Structure at Low Temperature in Cyclic Deformation. In: Consitutive Equations in Plasticity (Cambridge, Mass.) (A. S. Argon, ed.), MIT Press, 1975, pp. 251–326

  20. Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951)

    Google Scholar 

  21. Hansen, N., Hughes, D.A.: Analysis of large dislocation populations in deformed metals. Phys. Stat. Sol. A 149, 155–172 (1995)

    Google Scholar 

  22. Hardt, R., Kinderlehrer, D.: Elastic plastic deformation. Appl. Math. Optim. 10, 203–246 (1983)

    Google Scholar 

  23. Hirth, J.P., Lothe, J.: Theory of dislocations. McGraw-Hill, 1968

  24. Hubert, A.: Zur Theorie der zweiphasigen Domänenstrukturen in Supraleitern und Ferromagneten. Phys. Stat. Sol 24, 669–682 (1967)

    Google Scholar 

  25. Hughes, D.A., Dawson, D.B., Korellis, J.S., Weingarten, L.I.: Near-surface microstructures developing under large sliding loads. J. Mat. Engin. Perform. 3, 459–475 (1994)

    Google Scholar 

  26. Hughes, D.A., Hansen, N.: Microstructural evolution in nickel during rolling from intermediate to large strains. Met. Trans. A 24, 2021–2037 (1993)

    Google Scholar 

  27. Hughes, D.A., Nix, W.D.: Strain hardening and substructural evolution in Ni-Co solid solutions at large strains. Materials Science and Engineering A122, 153–172 (1989)

    Google Scholar 

  28. Jin, N.Y., Winter, T.: Cyclic deformation of copper single crystals oriented for double slip. Acta Metall. 32, 989–995 (1984)

    Google Scholar 

  29. Jin, W., Sternberg, P.: Energy estimates of the von Kármán model of thin-film blistering. J. Math. Phys. 42, 192–199 (2001)

    Google Scholar 

  30. Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear pde by geometry in matrix space. In: Geometric analysis and nonlinear partial differential equations (S. Hildebrandt & H. Karcher, eds.), Springer-Verlag, 2003, pp. 347–395

  31. Kocks, U.F.: Latent hardening and secondary slip in aluminum and silver. Trans. Metall. Soc. AIME 230, 1160 (1964)

    Google Scholar 

  32. Kohn, R.V., Müller, S.: Branching of twins near an austenite-twinned-martensite interface. Phil. Mag. A 66, 697–715 (1992)

    Google Scholar 

  33. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47, 405–435 (1994)

    Google Scholar 

  34. Landau, L.D.: The intermediate state of supraconductors. Nature 141, 688 (1938)

    Google Scholar 

  35. Landau, L.D.: On the theory of the intermediate state of superconductors. J. Phys. USSR 7, 99 (1943)

    Google Scholar 

  36. Martin, J.B.: Plasticity: Fundamentals and general results. MIT Press, Cambridge, USA, 1975

  37. Mughrabi, H.: Description of the Dislocation Structure after Unidirectional Deformation at Low Temperatures. In: Constitutive Equations in Plasticity (Cambridge, Mass.) (A. S. Argon, ed.), MIT Press, 1975, pp. 199–250

  38. Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of variations and geometric evolution problems (F. Bethuel et al., eds.), Springer Lecture Notes in Math. 1713, Springer-Verlag, 1999, pp. 85–210

  39. Mura, T.: Micromechanics of defects in solids. Kluwer Academic Publishers, Boston, 1987

  40. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Google Scholar 

  41. Ornstein, D.A.: A non-inequality for differential operators in the L1-norm. Arch. Ration. Mech. Anal. 11, 40–49 (1962)

    Google Scholar 

  42. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Google Scholar 

  43. Ortiz, M., Repetto, E.A., Stainier, L.: A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48, 2077–2114 (2000)

    Google Scholar 

  44. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    Google Scholar 

  45. Pierce, D., Asaro, R.J., Needleman, A.: An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)

    Google Scholar 

  46. Piercy, G.R., Cahn, R.W., Cottrell, A.H.: A study of primary and conjugate slip in crystals of alpha-brass. Acta Metall. 3, 333–338 (1955)

    Google Scholar 

  47. Privorotskii, I.: Thermodynamic theory of domain structures. Wiley, New York, 1976

  48. Rasmussen, K.V., Pedersen, O.B.: Fatigue of copper polycrystals at low plastic strain amplitudes. Acta Metall. 28, 1467–1478 (1980)

    Google Scholar 

  49. Reshetnyak, Yu.G.: Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9, 1039–1045 (1968)

    Google Scholar 

  50. Saimoto, S.: Low temperature tensile deformation of copper single crystals oriented for multiple slip. Ph.D. thesis, M. I. T., Cambridge, Mass., 1963

  51. Suquet, P.: Existence et régularité des solutions des équations de la plasticité. C. R. Acad. Sc. Paris 286, 1201–1204 (1978)

    Google Scholar 

  52. Temam, R.: Mathematical problems in plasticity. Bordas, Paris, 1985

  53. Temam, R., Strang, G.: Functions of bounded deformation. Arch. Ration. Mech. Anal. 75, 7–21 (1980)

    Google Scholar 

  54. Wu, T.Y., Bassani, J.L., Laird, C.: Latent hardening in single crystals, 1, theory and experiments. Proc. Roy. Soc. London A 435, 1–19 (1991)

    Google Scholar 

  55. Zimmer, W.H., Hecker, S.S., Rohr, D.L., Murr, L.E.: Large strain plastic deformation of commercially pure nickel. Metal Science 17, 198–206 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Ortiz, M. Dislocation Microstructures and the Effective Behavior of Single Crystals. Arch. Rational Mech. Anal. 176, 103–147 (2005). https://doi.org/10.1007/s00205-004-0353-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0353-2

Keywords

Navigation