Skip to main content
Log in

FE-studies on Shear Localization in an Anistropic Micro-polar Hypoplastic Granular Material

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The effect of transverse isotropy on shear localization in cohesionless granular materials is numerically investigated upon monotonous plane strain deformation paths using a hypoplastic constitutive model enhanced by micro-polar terms. In this model, a so-called density function is reformulated and made anisotropic. Dense sand specimens under constant lateral pressure are numerically tested for uniform and stochastic distributions of the initial void ratio and for two different mean grain diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kolymbas D. (1977) A rate-dependent constitutive equation for soils. Mech. Res. Comm 6, 367–372

    Article  Google Scholar 

  2. Wu, W. Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 129, (1992)

  3. Gudehus G. (1996) A comprehensive constitutive equation for granular materials. Soils Foundations 36(1): 1–12

    Google Scholar 

  4. Bauer E. (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Foundations 36(1): 13–26

    Google Scholar 

  5. von Wolffersdorff P.A. (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271

    Article  Google Scholar 

  6. Niemunis, A. Extended hypoplastic models for soils. Habilitation Monography. Gdansk University of Technology (2003)

  7. Maier, T. Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität. PhD Thesis, University of Dortmund (2002)

  8. Tejchman J. (2004) Influence of a characteristic length on shear zone thickness in hypoplasticity with different enhancements. Comput. Geotech. 31(8): 595–611

    Article  Google Scholar 

  9. Boehler J.P., Sawczuk A. (1977) On yielding of oriented solids. Acta Mech. 27, 185–206

    Article  Google Scholar 

  10. Kanatani K.I. (1984) Distribution of directional data and fabric tensor. Int. J. Eng. Sci. 22, 149–160

    Article  MATH  MathSciNet  Google Scholar 

  11. Oda M., Nemat-Nasser, Konishi J. (1985) Stress induced anisotropy in granular masses. Soils Foundations 25(3): 85–97

    Google Scholar 

  12. Satake, M. A theory on the stress-induced anisotropy. In: Garcia-Rojo, Herrmann, McNamara (eds.), Powders and grains, Taylor and Francis Group, London, pp. 155–158 (2005)

  13. Khidas, Y., Jia, X. Acoustic measurements of anisotropic elasticity in glass beads packings. In: Garcia-Rojo, Herrmann, McNamara (eds.), Powders and grains, Taylor and Francis Group, London, pp. 309–312 (2005)

  14. Kuhn, M.R. Scaling in granular materials. In: Garcia-Rojo, Herrmann, McNamara (eds.), Powders and grains, Taylor and Francis Group, London, pp. 115–122 (2005)

  15. Dafalias Y.F., Papadimitriou A.G., Xiang X.S. (2004) Sand plasticity model accounting for inherent fabric anisotropy. J. Eng. Mech. ASCE. 130, 1319–1333

    Article  Google Scholar 

  16. Tatsuoka, F. Impacts on geotechnical engineering of several recent findings from laboratory stress-strain tests on geomaterials. Lecture note for the 2000 Burmister Lecture, October 2000, Columbia University (2000)

  17. Han C., Vardoulakis I. (1991) Plane strain compression experiments on water saturated fine-grained sand. Geotechnique 41, 49–78

    Google Scholar 

  18. Rowe P.W. (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. A 269, 500–527

    Article  ADS  Google Scholar 

  19. Doanh, T., Finge, Z., Boucq, S., Dubujet Ph. Historiotropy of Hostun RF loose sand. Proceedings of the Conference “Modern Trends in Geomechanics”. Springer, Vienna (2006) (In press)

  20. Pena, A.A., Herrmann, H.J., Lizcano, A., Alonso-Marroquin, F. Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. In: Garcia-Rojo, Herrmann, McNamara (ed.), Powders and Grains, Taylor and Francis Group, London, pp. 697–700 (2005)

  21. Schoffield A.N., Wroth C.P. (1968) Critical State Soil Mechanics. Mc Graw Hill, London

    Google Scholar 

  22. Desrues J., Chambon R., Mokni M., Mazerolle F. (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46, 529–546

    Google Scholar 

  23. Vermeer, P. A five-constant model unifying well-established concepts. In:Gudehus, G., Darve, F., Vardoulakis, I. (ed.), Proceedings of international workshop on constitutive relations for soils. Balkema, pp. 175–197 (1982)

  24. Lade P.V. (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solid Struct. 13, 1019–1035

    Article  MATH  Google Scholar 

  25. Pestana J.M., Whittle A.J. (1999) Formulation of a unified constitutive model for clays and sands. In. J. Num. Anal. Meth. Geomech. 23, 1215–1243

    Article  MATH  Google Scholar 

  26. Desrues J., Chambon R. (1989) Shear band analysis for granular materials – the question of incremental linearity. Ingenieur Arch 59, 187–196

    Article  Google Scholar 

  27. Darve F., Flavigny E., Megachou M. (1995) Yield surfaces and principle of superposition revisited by incrementally non-linear constitutive relations. Int. J. Plasticity 11(8): 927–948

    Article  MATH  Google Scholar 

  28. Lanier J., Caillerie D., Chambon R. (2004) A general formulation of hypoplasticity. Int. J. Numer. Anal. Methods in Geomech. 28(15): 1461–1478

    Article  MATH  ADS  Google Scholar 

  29. Mühlhaus H.-B. (1990). Continuum models for layered and blocky rock. In: Hudson J.A., Fairhurst Ch. (eds). Comprehensive rock engineering, vol. 2, Pergamon Press, Newyork, pp. 209–231

    Google Scholar 

  30. Tejchman J., Wu W. (1993) Numerical study on shear band patterning in a Cosserat continuum. Acta Mech. 99, 61–74

    Article  MATH  Google Scholar 

  31. Tejchman J., Gudehus G. (2001) Shearing of a narrow granular strip with polar quantities. J. Num. Anal. Methods Geomech. 25, 1–18

    Article  MATH  Google Scholar 

  32. Huang W., Nübel K., Bauer E. (2002) A polar extension of hypoplastic model for granular material with shear localization. Mech. Mater. 34, 563–576

    Article  Google Scholar 

  33. Gudehus G., Nübel K. (2004) Evolution of shear bands in sand. Geotechnique 54(3): 187–201

    Article  Google Scholar 

  34. Bazant, Z., Lin, F., Pijaudier-Cabot, G. Yield limit degradation: non-local continuum model with local strain. In: Owen (ed.), Proceedings of international conference computational plasticity, Barcelona, pp. 1757–1780 (1987)

  35. Brinkgreve, R. Geomaterial models and numerical analysis of softening. Dissertation, Delft University, pp. 1–153 (1994)

  36. Aifantis E.C. (1984) On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–334

    Article  Google Scholar 

  37. de Borst R., Mühlhaus H.-B. (1992) Gradient dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539

    Article  MATH  Google Scholar 

  38. Pamin, J. Gradient-dependent plasticity in numerical simulation of localisation phenomena. PhD Thesis, Delft University, pp. 1–134 (1994)

  39. Loret B., Prevost J.H. (1990) Dynamic strain localisation in elasto-visco-plastic solids, Part 1. General formulation and one-dimensional examples. Comp. Appl. Mech. Eng. 83, 247–273

    Article  MATH  Google Scholar 

  40. Sluys L.J., de Borst R. (1994) Dispersive properties of gradient and rate-dependent media. Mech. Mater. 183, 131–149

    Article  Google Scholar 

  41. de Borst R., Mühlhaus H.-B., Pamin J., Sluys L. (1992). Computational modelling of localization of deformation. In: Owen D.R.J., Onate H., Hinton E. (eds). Proceedings of the 3rd International Conference Computational Plasticity. Pineridge Press, Swansea, pp. 483–508

    Google Scholar 

  42. Larsson J., Larsson R. (2000) Finite-element analysis of localization of deformation and fluid pressure in elastoplastic porous medium. Int. J. Solids and Structures 37, 7231–7257

    Article  MATH  Google Scholar 

  43. Simone, A., Sluys, L. Continous-discountinous modeling of mode-I and mode-II failure. In: Vermeer, P.A., Ehlers, W., Herrmann, H.J., Ramm E. (ed.), Modelling of cohesive-frictional materials, Balkema, pp. 323–337 (2004)

  44. Tatsuoka, F., Goto, S., Tanaka, T., Tani, K., Kimura, Y. Particle size effects on bearing capacity of footing on granular material. In: Asaoka, A., Adachi, T., Oka, F. (ed.), Deformation and Progressive Failure in Geomechanics Pergamon, pp. 133–138 (1997)

  45. Arthur J.R.F., Phillips A.B. (1975) Homogeneous and layered sand in triaxial compression. Geotechnique 25(4): 799–815

    Article  Google Scholar 

  46. Lam W.K., Tatsuoka F. (1988) Effect of initial anisotropic fabric and on strength and deformation characteristics of sand. Soils Foundations 28(1): 89–106

    Google Scholar 

  47. Tatsuoka F., Nakamura S., Huang C., Tani K. (1990) Strength anisotropy and shear band direction in plane strain tests of sand. Soils Foundations 30(1): 35–54

    Google Scholar 

  48. Tatsuoka, F., Siddiquee, M.S.A., Yoshida, T., Park, C.S., Kamegai, Y., Goto, S., Kohata, Y.: Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Leighton Buzzard sand. Internal Report of the Tokyo University, pp. 1–120, (1994)

  49. Abelev A.V., Lade P.V. (2003) Effects of cross anisotropy on 3-dimensional behaviour of sand. II: Stress-strain behaviour and shear banding. J. Eng. Mech. ASCE. 129(2): 167–174

    Article  Google Scholar 

  50. Yamada Y., Ishihara K. (1979) Anisotropic deformation characteristics of sand under three dimensional stress conditions. Soils Foundations 19(2): 79–94

    Google Scholar 

  51. Bauer E., Huang W., Wu W. (2004) Investigations of shear banding in an anisotropic hypoplastic material. Int. J. Solids Struct. 41, 5903–5919

    Article  MATH  Google Scholar 

  52. Wu W. (1998) Rational approach to anisotropy of sand. Int. J. Numer. Anal. Meths. Geomech. 22, 921–940

    Article  MATH  Google Scholar 

  53. Niemunis, A. Anisotropic effects in hypoplasticity. In: Proceedings of international symposium on deformation characteristics of geomaterials, Vol 1, pp. 1211–1217, Lyon, France, (2003a) Geomech. 4, 103–119 (1980)

  54. Oda M., Konishi J., Nemat-Nasser S. (1982) Experimental micromechanical evaluation of strength of granular materials, effects of particle rolling. Mechanics of Mater 1, 269–283

    Article  Google Scholar 

  55. Oda, M. Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (ed.), Powders and Grains, Rotterdam, Balkema, pp. 161–167 (1993)

  56. Tejchman J. (2001). Shearing of an infinite narrow granular layer between two boundaries. In: Mühlhaus H.B., et al., (eds). Bifurcation and Localisation Theory in Geomechanics. Swets and Zeitlinger, Lisse, pp. 95–102

    Google Scholar 

  57. Pasternak E., Mühlhaus H.-B. (2001). Cosserat continuum modelling of granulate materials. In: Valliappan S., Khalili N. (eds). Computational Mechanics – New Frontiers for New Millennium. Elsevier Science, Amsterdam, pp. 1189–1194

    Google Scholar 

  58. Herle I., Gudehus G. (1999). Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive Frictional Mater. 4(5): 461–486

    Article  Google Scholar 

  59. Vardoulakis I. (1980) Shear band inclination and shear modulus in biaxial tests. Int. J. Num. Anal. Meth. Geomech. 4, 103–119

    Article  MATH  Google Scholar 

  60. Shahinpoor M. (1981) Statistical mechanical considerations on storing bulk solids. Bulk Solid Handling 1(1): 31–36

    Google Scholar 

  61. Nübel K., Karcher C. (1998) FE simulations of granular material with a given frequency distribution of voids as initial condition. Granular Matter 1(3): 105–112

    Article  Google Scholar 

  62. Niemunis, A. Bodenmechanik 2, Script, University of Bochum http://www.ruhr-uni-bochum.de/gub/mitarbeiter/andrzej_niemunis.htm, 2004.

  63. Tejchman, J. FE-analysis of shear localization in 2-D random granular bodies. In: Proceedings of International Conference of ICCS 2006, Reading, Great Britain (2006)

  64. Walukiewicz H., Bielewicz E., Gorski J. (1997) Simulation of nonhomegeneous random fields for structural applications. Comput. Struct. 64(1–4): 491–498

    Article  MATH  MathSciNet  Google Scholar 

  65. Tejchman, J. Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity. Comput. Geotech (2006) (In press)

  66. Slominski, C., Niedostatkiewicz, M., Tejchman, J. Deformation measurements in granular bodies using a particie image velocimetry technique. Archiv. Hydro-Eng. Environ. Mech. Polish Acad. Sci. (2006) (In press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejchman, J., Niemunis, A. FE-studies on Shear Localization in an Anistropic Micro-polar Hypoplastic Granular Material. Granular Matter 8, 205–220 (2006). https://doi.org/10.1007/s10035-006-0009-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-006-0009-z

Keywords

Navigation