Skip to main content
Log in

Bridging the Length Scales: Micromechanics of Granular Media

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Aristotle's statement that “the whole is more than the sum of its parts” aptly describes the essence of a granular material's rich and complex behaviour, which ultimately arises from internal mechanisms developed on many length scales. Recently, non-invasive experimental studies have given remarkable insight into the evolution of these mechanisms, thereby providing benchmarks and a unique opportunity for the theoretical modelling of these systems. This paper focuses on the challenges of capturing these multiscale mechanisms within the framework of continuum theory. In particular, a new approach toward developing a non-local micropolar constitutive model of granular media using micromechanics and internal variable theory is discussed. To demonstrate the predictive potential of these models, we present their application in the analysis of two fundamental problems to the mechanics of granular media: (i) formation and evolution of shear bands (the precursors of material failure), (ii) the classical Flamant problem. Finally, we briefly discuss the computational challenges in bridging the gap between micromechanical studies of granular media and the applications of continuum theory on the macro-scale via a finite element analysis of the flat punch problem. In practice, this problem is used to assess the load bearing capacity of a material and is fundamental to civil and structural engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. A. Alshibli and S. Sture, Shear band formation in plane strain experiments of sand, J. Geotech. Geoenv. Eng., 126(6)(2000), pp. 495–503.

    Google Scholar 

  2. G. S. D. Ayton, S. Bardenhagen, P. McMurtry, D. Sulsky, and G. A. Voth, Interfacing molecular dynamics with continuum dynamics in computer simulation:Toward an application to biological membranes, IBM J. Res. & Dev., 3/4 (2001), pp. 417–426.

    Google Scholar 

  3. S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky, The material-point method for granular materials, Comp. Meth. App. Mech. Eng., 187 (2000), pp. 529–541.

    Google Scholar 

  4. J. P. Bardet and J. Proubet, Shear-band analysis in idealized granular material, J. Eng. Mech., 118 (1992), pp. 397–415.

    Google Scholar 

  5. J. Biarez and S. Taibi, From grains to a continuum:Experiments to check codes, CDROM, Kodak, France, 1998.

  6. F. Calvetti, G. Combe, and J. Lanier, Experimental micromechanical analysis of a 2D granular material:Relation between structure evolution and loading path, Mech. Cohes.-Fric. Mater., 2 (1997), pp. 121–163.

    Google Scholar 

  7. C. S. Chang and J. Gao, Kinematic and static hypothesis for constitutive modelling of granulates considering particle rotation, Acta Mech., 115 (1996), pp. 213–229.

    Google Scholar 

  8. C. S. Chang and L. Ma, A micromechanically-based micropolar theory for deformation of granular solids, Int. J. Solids Struct., 21 (1991), pp. 67–86.

    Google Scholar 

  9. I. F. Collins and G. T. Houlsby, Applications of thermomechanical principles to the modeling of geotechnical materials, Proc. R. Soc. London, Ser. A, 453 (1997), pp. 1975–200.

    Google Scholar 

  10. F. Dufour, H.-B. Mühlhaus, and L. Moresi, A particle-in-cell formulation for large deformation in Cosserat continua, inH.-B. Mühlhaus, A. Dyskin, and E. Pasternak (eds), Bifurcation and Localization in Soils and Rocks, Balkema, Rotterdam, 2001, pp. 133–138.

  11. J. Duran, Sands, Powders and Grains, Springer-Verlag, New York, 2000.

    Google Scholar 

  12. D. Durian and H. Diamant, In search of soft solutions, Nature, 412 (2001), pp. 391–392.

    Google Scholar 

  13. W. Ehlers and W. Volk, On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations, Mech. Cohes.-Fric. Mat., 2 (1997), pp. 301–320.

    Google Scholar 

  14. B. S. Gardiner and A. Tordesillas, Micromechanical constitutive modelling of granular media:A focus on the evolution and loss of contacts in particle clusters, Submitted to J. Eng. Math.(2003).

  15. B. S. Gardiner, A. Tordesillas, and J. F. Peters, Incorporating microstructural evolution into micromechanical based continuum models of dry granular media, in K. Bagi (ed.), Proc. QuaDPM '03 Workshop, Publishing Company of BUTE, 2003, pp. 107–118.

  16. V. T. Granik and M. Ferrari, Microstructural mechanics of granular materials, Mech. Mater., 15 (1993), pp. 301–322.

    Google Scholar 

  17. D. A. Horner, J. F. Peters, and A. Carrillo, Large scale discrete element modeling of vehicle-soil interaction, J. Eng. Mech. ASCE, 127 (2001), pp. 1027–1032.

    Google Scholar 

  18. K. Iwashita and M. Oda, Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Tech., 109 (2000), pp. 192–205.

    Google Scholar 

  19. Y. Kishino (ed.), Powders and Grains, A. A. Balkema, Tokyo, 2001.

  20. N. P. Kruyt and L. Rothenburg, Statistics of forces and relative displacements at contacts in biaxial deformation of granular materials, in K. Bagi (ed.), Proceedings of the QuaDPM '03 Workshop, Publishing Company of BUTE, Budapest, 2003, pp. 141–150.

    Google Scholar 

  21. M. R. Kuhn, Structured deformation in granular materials, Mech. Mater., 31 (1999), pp. 407–429.

    Google Scholar 

  22. H.-B. Mühlhaus and P. Hornby, Energy and averages in the mechanics of granular materials, Tectonophysics, 335(2001), pp. 63–80.

    Google Scholar 

  23. H.-B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials, Geotechnique, 37 (1987), pp. 271–283.

    Google Scholar 

  24. M. Oda and K. Iwashita (eds), Mechanics of Granular Materials:An Introduction, A. A. Balkema, Rotterdam, 1999.

  25. M. Oda and H. Kazama, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Geotechnique, 48 (1998), pp. 465–481.

    Google Scholar 

  26. M. Oda, J. Konishi, and S. Nemat-Nasser, Experimental micromechanical evaluation of the strength of granular materials:Effects of particle rolling, Mechanics of Materials, 1 (1982), pp. 269–283.

    Google Scholar 

  27. M. Otto, J.-P. Bouchaud, P. Claudin, and J. E. S. Socolar, Anisotropy in granular media: Classical elasticity and directed-force chain network, Phys. Rev. E, 67 (2003), pp. 031202.

    Google Scholar 

  28. J. F. Peters and D. A. Horner, Errors of scale in discrete element computations, in K. Cook and R. P. Jensen (eds), Discrete Element Methods:Numerical Modeling of Discontinua:Proceedings of the Third International Conference, ASCE, Santa Fe, 2002, pp. 56–67.

  29. J. Tejchman, I. Herle, and J. Wehr, FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization, Int. J. Num. Anal. Meth. Geomech., 23 (1999), pp. 2045–2074.

    Google Scholar 

  30. A. Tordesillas, J. F. Peters, and B. S. Gardiner, Shear band evolution and accumulated microstructural development in Cosserat Media, Int. J. Num. Anal. Meth. Geomech. (2004), in press.

  31. A. Tordesillas and J. Shi, Frictional indentation of dilatant granular materials, Proc. R. Soc. London, Ser. A, 455 (1999), pp. 261–283.

    Google Scholar 

  32. A. Tordesillas and S. D. C. Walsh, Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media, Powder Tech., 124 (2002), pp. 106–111.

    Google Scholar 

  33. K. C. Valanis, A gradient theory of internal variables, Acta Mech., 116 (1996), pp. 1–14.

    Google Scholar 

  34. K. Valanis and J. Peters, Ill-posedness of the initial and boundary value problems in non-associative plasticity, Acta Mech., 114 (1996), pp. 1–25.

    Google Scholar 

  35. K. C. Valanis, J. F. Peters, and J. Gill, Congurational entropy, non-associativity and uniqueness in granular media, Acta Mech., 100 (1993), pp. 79–93.

    Google Scholar 

  36. S. D. C. Walsh and A. Tordesillas, The Flamant problem for a two-dimensional micropolar granular material, Granular Matter, Submitted for review, October 2003.

  37. S. D. C. Walsh and A. Tordesillas, A thermomechanical approach to the development of micropolar constitutive models of granular media, Acta Mech.(2004), in press.

  38. T. A. Witten, Insights from soft condensed matter, Rev. Mod. Phys., 71 (1999), pp. S367–S373.

    Google Scholar 

  39. H. Ziegler, An Introduction to Thermomechanics, 2nd edn, North-Holland, Amsterdam, 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tordesillas, A., Walsh, S.D.C. & Gardiner, B.S. Bridging the Length Scales: Micromechanics of Granular Media. BIT Numerical Mathematics 44, 539–556 (2004). https://doi.org/10.1023/B:BITN.0000046817.60322.ed

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BITN.0000046817.60322.ed

Navigation