2013 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Fluorescence in Bio-inspired Nanotechnology
An important criterion in all definitions of life is the requirement for enclosure. There must be a boundary that separates the living systems from its surroundings, that prevents dissociation of genetic information and that enables an autopoietic metabolic system to be upheld. On the fundamental level of the single cell, enclosure is created by a doubled-layered membrane which encapsulates the cellular components, effectively isolating them from the cell exterior. The cell membrane is a highly dynamic system relying of self-assembly and self-organization. From a nanotechnological point of view these properties, which can be traced down to the properties of the individual building blocks, are highly interesting. In paper IV and V, bio-inspired membrane systems are utilized to facilitate reactions between molecules confined to a surface.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfaces and polymers in aqueous solution, 2nd edn. Wiley, Chichester, p 545
2.
Czolkos I, Erkan Y, Dommersnes P, Jesorka A, Orwar O (2007) Controlled formation and mixing of two-dimensional fluids. Nano Lett 7:1980–1984
CrossRef
3.
Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653
CrossRef
4.
Evans E, Needham D (1987) Physical-properties of surfactant bilayer-membranes—thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91:4219–4228
CrossRef
5.
Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56
CrossRef
6.
Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48
CrossRef
7.
Nissen J, Gritsch S, Wiegand G, Radler JO (1999) Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur Phys J B 10:335–344
CrossRef
8.
Czolkos I, Hannestad JK, Jesorka A, Kumar R, Brown T, Albinsson B, Orwar O (2009) Platform for controlled supramolecular nanoassembly. Nano Lett 9:2482–2486
CrossRef
9.
Czolkos I, Guan J, Orwar O, Jesorka A (2011) Flow control of thermotropic lipid monolayers. Soft Matter 7:6926–6933
CrossRef
10.
Czolkos I, Hakonen B, Orwar O, Jesorka A (2012) High-resolution micropatterned teflon AF substrates for biocompatible nanofluidic devices. Langmuir 28:3200–3205
CrossRef
11.
Berg OG, Vonhippel PH (1985) Diffusion-controlled macromolecular interactions. Ann Rev Biophys Biophys Chem 14:131–160
CrossRef
12.
Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14
CrossRef
13.
Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572
CrossRef
14.
Yoon TY, Jeong C, Lee SW, Kim JH, Choi MC, Kim SJ, Kim MW, Lee SD (2006) Topographic control of lipid-raft reconstitution in model membranes. Nat Mater 5:281–285
CrossRef
15.
Ursell TS, Klug WS, Phillips R (2009) Morphology and interaction between lipid domains. Proc Natl Acad Sci USA 106:13301–13306
CrossRef
16.
Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901
CrossRef
17.
de Gennes PG (1982) Kinetics of diffusion-controlled processes in dense polymer systems. 1. non-entangled regimes. J Chem Phys 76:3316–3321
CrossRef
18.
Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44
CrossRef
19.
Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388
CrossRef
20.
Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888
CrossRef
21.
Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325
CrossRef
22.
Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776
CrossRef
23.
Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117
CrossRef
24.
Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234
CrossRef
25.
Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol 2:a002212
CrossRef
26.
Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390
CrossRef
27.
Walde P, Goto A, Monnard PA, Wessicken M, Luisi PL (1994) Oparins reactions revisited—enzymatic-synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc 116:7541–7547
CrossRef
28.
Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998
CrossRef
29.
Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994) Autopoietic self-reproduction of fatty-acid vesicles. J Am Chem Soc 116:11649–11654
CrossRef
30.
Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713
CrossRef
31.
Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476
CrossRef
32.
Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275
CrossRef
33.
Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240
CrossRef
34.
Ertem G, Ferris JP (1997) Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds. J Am Chem Soc 119:7197–7201
CrossRef
35.
Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622
CrossRef
36.
De Landa M (1997) A thousand years of nonlinear history. Zone Books, Brooklyn
37.
Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220
CrossRef
38.
He MY, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544
CrossRef
39.
Edgar JS, Milne G, Zhao Y, Pabbati CP, Lim DSW, Chiu DT (2009) Compartmentalization of chemically separated components into droplets. Angew Chem Int Ed 48:2719–2722
CrossRef
40.
Chan YHM, Boxer SG (2007) Model membrane systems and their applications. Curr Opin Chem Biol 11:581–587
CrossRef
41.
Chiu DT, Wilson CF, Ryttsen F, Stromberg A, Farre C, Karlsson A, Nordholm S, Gaggar A, Modi BP, Moscho A, Garza-Lopez RA, Orwar O, Zare RN (1999) Chemical transformations in individual ultrasmall biomimetic containers. Science 283:1892–1895
CrossRef
42.
Karlsson A, Karlsson R, Karlsson M, Cans AS, Stromberg A, Ryttsen F, Orwar O (2001) Molecular engineering—networks of nanotubes and containers. Nature 409:150–152
CrossRef
43.
Karlsson M, Sott K, Davidson M, Cans AS, Linderholm P, Chiu D, Orwar O (2002) Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc Natl Acad Sci USA 99:11573–11578
CrossRef
44.
Karlsson M, Davidson M, Karlsson R, Karlsson A, Bergenholtz J, Konkoli Z, Jesorka A, Lobovkina T, Hurtig J, Voinova M, Orwar O (2004) Biomimetic nanoscale reactors and networks. Annu Rev Phys Chem 55:613–649
CrossRef
45.
Sott K, Lobovkina T, Lizana L, Tokarz M, Bauer B, Konkoli Z, Orwar O (2006) Controlling enzymatic reactions by geometry in a biomimetic nanoscale network. Nano Lett 6:209–214
CrossRef
46.
Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Natl Acad Sci USA 105:4099–4104
CrossRef
47.
Tokarz M, Akerman B, Olofsson J, Joanny JF, Dommersnes P, Orwar O (2005) Single-file electrophoretic transport and counting of individual dna molecules in surfactant nanotubes. Proc Natl Acad Sci USA 102:9127–9132
CrossRef
48.
Granéli A, Edvardsson M, Höök F (2004) DNA-based formation of a supported, three-dimensional lipid vesicle matrix probed by QCM-D and SPR. ChemPhysChem 5:729–733
CrossRef
49.
Stengel G, Zahn R, Höök F (2007) DNA-induced programmable fusion of phospholipid vesicles. J Am Chem Soc 129:9584
CrossRef
50.
Simonsson L, Jönsson P, Stengel G, Höök F (2010) Site-specific DNA-controlled fusion of single lipid vesicles to supported lipid bilayers. ChemPhysChem 11:1011–1017
CrossRef
51.
Gunnarsson A, Sjövall P, Höök F (2010) Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry. Nano Lett 10:732–737
CrossRef
52.
Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697
CrossRef
53.
Chan YHM, Lenz P, Boxer SG (2007) Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc Natl Acad Sci USA 104:18913–18918
CrossRef
54.
Rawle RJ, van Lengerich B, Chung M, Bendix PM, Boxer SG (2011) Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys J 101:L37–L39
CrossRef
55.
Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533
CrossRef
56.
Groves JT, Boxer SG (2002) Micropattern formation in supported lipid membranes. Acc Chem Res 35:149–157
CrossRef
57.
Erkan Y, Czolkos I, Jesorka A, Wilhelmsson LM, Orwar O (2007) Direct immobilization of cholesteryl-TEG-modified oligonucleotides onto hydrophobic SU-8 surfaces. Langmuir 23:5259–5263
CrossRef
58.
Erkan Y, Halma K, Czolkos I, Jesorka A, Dommersnes P, Kumar R, Brown T, Orwar O (2008) Controlled release of Chol-TEG-DNA from nano- and micropatterned SU-8 surfaces by a spreading lipid film. Nano Lett 8:227–231
CrossRef
- Titel
- Lipids: Soft, Dynamic Containers
- DOI
- https://doi.org/10.1007/978-3-319-01068-7_6
- Autor:
-
Jonas Hannestad
- Verlag
- Springer International Publishing
- Sequenznummer
- 6
- Kapitelnummer
- Chapter 6