Skip to main content

2015 | OriginalPaper | Buchkapitel

13. Liquid Fuels Production from Algal Biomass

verfasst von : Shantonu Roy, Debabrata Das

Erschienen in: Algal Biorefinery: An Integrated Approach

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy crisis is looming the global economy and environment. The rate at which fossil fuels are depleting, a necessity of alternate fuel has been gaining importance. The use of fossil fuels for energy is unsustainable and causes build up of greenhouse gases in the atmosphere leading to global warming. Biofuels store energy chemically that can be harnessed easily. It can also be used in existing combustion engines after blending with petroleum diesel to various degrees. No separate transportation infrastructures would be required for such fuels (Amaro et al., Appl Energy 88:3402–3410, 2011). In biorefinery concept, every component of the biomass material would be used to produce commercially important products. At present, first generation biofuels are produced using sucrose and starch crops. Second generation biofuels are produced using lignocellulosic biomass. Lignocellulosic biomass gained importance because of their abundant availability but need of pretreatment and saccharification processes has hindered their usage as feedstock. Moreover, bioenergy production using agricultural crops or agricultural wastes as feedstock is disadvantageous as resources for water and agriculture lands are limited (Li et al., Appl Microbiol Biotechnol 81:629–636, 2008). Algal biomass has been considered as third generation feedstock for biofuel production (Metzger and Largeau, Appl Microbiol Biotechnol 66:486–496, 2005). Many algal species having high lipid content thus could be explored for oleo-fuel generation. Similarly, algal species having high carbohydrate content can be exploited for bioethanol or biogas production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agbor, V.B., Cicek, N., Sparling, R., Berlin, A. and Levin, D.B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv., 29, 675–685.CrossRef Agbor, V.B., Cicek, N., Sparling, R., Berlin, A. and Levin, D.B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv., 29, 675–685.CrossRef
Zurück zum Zitat Amaro, H.M., Guedes, A.C. and Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy, 88, 3402–3410.CrossRef Amaro, H.M., Guedes, A.C. and Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy, 88, 3402–3410.CrossRef
Zurück zum Zitat Banerjee, A., Sharma, R., Chisti, Y. and Banerjee, U.C. (2002). Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol., 22, 245–279.CrossRef Banerjee, A., Sharma, R., Chisti, Y. and Banerjee, U.C. (2002). Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol., 22, 245–279.CrossRef
Zurück zum Zitat Belarbi, E.-H., Molina, E. and Chisti, Y. (2000). RETRACTED: A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochem., 35, 951–969.CrossRef Belarbi, E.-H., Molina, E. and Chisti, Y. (2000). RETRACTED: A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochem., 35, 951–969.CrossRef
Zurück zum Zitat Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K. and Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresour. Technol., 101, 4767–4774.CrossRef Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K. and Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresour. Technol., 101, 4767–4774.CrossRef
Zurück zum Zitat Brown, L.M. and Zeiler, K.G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Convers. Manag., 34, 1005–1013.CrossRef Brown, L.M. and Zeiler, K.G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Convers. Manag., 34, 1005–1013.CrossRef
Zurück zum Zitat Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306.CrossRef Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306.CrossRef
Zurück zum Zitat Choi, S.P., Nguyen, M.T. and Sim, S.J. (2010). Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol., 101, 5330–5336.CrossRef Choi, S.P., Nguyen, M.T. and Sim, S.J. (2010). Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol., 101, 5330–5336.CrossRef
Zurück zum Zitat Demirbas, A. (2007). Importance of biodiesel as transportation fuel. Energy Policy, 35, 4661–4670.CrossRef Demirbas, A. (2007). Importance of biodiesel as transportation fuel. Energy Policy, 35, 4661–4670.CrossRef
Zurück zum Zitat Ghirardi, M. (2000). Microalgae: A green source of renewable H2. Trends Biotechnol., 18, 506–511.CrossRef Ghirardi, M. (2000). Microalgae: A green source of renewable H2. Trends Biotechnol., 18, 506–511.CrossRef
Zurück zum Zitat Goh, C.S. and Lee, K.T. (2010). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew. Sustain. Energy Rev., 14, 842–848. Goh, C.S. and Lee, K.T. (2010). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew. Sustain. Energy Rev., 14, 842–848.
Zurück zum Zitat Gouveia, L. and Oliveira, A.C. (2009). Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36, 269–274.CrossRef Gouveia, L. and Oliveira, A.C. (2009). Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36, 269–274.CrossRef
Zurück zum Zitat Hargreaves, P.I., Barcelos, C.A., da Costa, A.C.A. and Pereira, N. (2013). Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresour. Technol., 134, 257–263.CrossRef Hargreaves, P.I., Barcelos, C.A., da Costa, A.C.A. and Pereira, N. (2013). Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresour. Technol., 134, 257–263.CrossRef
Zurück zum Zitat Harun, R., Danquah, M.K. and Forde, G.M. (2009). Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol., 85(2), 199–203. Harun, R., Danquah, M.K. and Forde, G.M. (2009). Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol., 85(2), 199–203.
Zurück zum Zitat Helwani, Z., Othman, M.R., Aziz, N., Kim, J. and Fernando, W.J.N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl. Catal. A Gen., 363, 1–10.CrossRef Helwani, Z., Othman, M.R., Aziz, N., Kim, J. and Fernando, W.J.N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl. Catal. A Gen., 363, 1–10.CrossRef
Zurück zum Zitat Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 54, 621–639.CrossRef Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 54, 621–639.CrossRef
Zurück zum Zitat İçöz, E., Mehmet Tuğrul, K., Saral, A. and İçöz, E. (2009). Research on ethanol production and use from sugar beet in Turkey. Biomass and Bioenergy, 33, 1–7.CrossRef İçöz, E., Mehmet Tuğrul, K., Saral, A. and İçöz, E. (2009). Research on ethanol production and use from sugar beet in Turkey. Biomass and Bioenergy, 33, 1–7.CrossRef
Zurück zum Zitat Jang, J.-S., Cho, Y., Jeong, G.-T. and Kim, S.-K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng., 35, 11–18.CrossRef Jang, J.-S., Cho, Y., Jeong, G.-T. and Kim, S.-K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng., 35, 11–18.CrossRef
Zurück zum Zitat Khan, S.A., Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev., 13, 2361–2372.CrossRef Khan, S.A., Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev., 13, 2361–2372.CrossRef
Zurück zum Zitat Kim, N.-J., Li, H., Jung, K., Chang, H.N. and Lee, P.C. (2011). Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol., 102, 7466–7469.CrossRef Kim, N.-J., Li, H., Jung, K., Chang, H.N. and Lee, P.C. (2011). Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol., 102, 7466–7469.CrossRef
Zurück zum Zitat Knothe, G. (2006). Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc., 83, 823–833.CrossRef Knothe, G. (2006). Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc., 83, 823–833.CrossRef
Zurück zum Zitat Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W. and Lee, E.Y. (2013). Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol., 132, 197–201.CrossRef Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W. and Lee, E.Y. (2013). Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol., 132, 197–201.CrossRef
Zurück zum Zitat Li, Y., Horsman, M., Wang, B., Wu, N. and Lan, C.Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol., 81, 629–636.CrossRef Li, Y., Horsman, M., Wang, B., Wu, N. and Lan, C.Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol., 81, 629–636.CrossRef
Zurück zum Zitat Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A. and Giuffrè, A.M. (2010). Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Appl. Catal. A Gen., 378, 160–168.CrossRef Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A. and Giuffrè, A.M. (2010). Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Appl. Catal. A Gen., 378, 160–168.CrossRef
Zurück zum Zitat Marchetti, J.M., Miguel, V.U. and Errazu, A.F. (2007). Possible methods for biodiesel production. Renew. Sustain. Energy Rev., 11, 1300–1311.CrossRef Marchetti, J.M., Miguel, V.U. and Errazu, A.F. (2007). Possible methods for biodiesel production. Renew. Sustain. Energy Rev., 11, 1300–1311.CrossRef
Zurück zum Zitat Mata, T.M., Martins, A.A. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14, 217–232.CrossRef Mata, T.M., Martins, A.A. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14, 217–232.CrossRef
Zurück zum Zitat Metzger, P. and Largeau, C. (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol., 66, 486–496.CrossRef Metzger, P. and Largeau, C. (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol., 66, 486–496.CrossRef
Zurück zum Zitat Mittal, A., Katahira, R., Himmel, M.E. and Johnson, D.K. (2011). Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility. Biotechnol. Biofuels, 4, 41.CrossRef Mittal, A., Katahira, R., Himmel, M.E. and Johnson, D.K. (2011). Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility. Biotechnol. Biofuels, 4, 41.CrossRef
Zurück zum Zitat Moellering, E.R. and Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell, 9, 97–106.CrossRef Moellering, E.R. and Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell, 9, 97–106.CrossRef
Zurück zum Zitat Mussato, S.I., Dragone, G., Guimarães, P.M., Silva, J.P.A., Carneiro, L., Roberto, L.M., Vicente, A., Domingues, L. and Teixeira, J.A. et al. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv., 28, 817–830. Mussato, S.I., Dragone, G., Guimarães, P.M., Silva, J.P.A., Carneiro, L., Roberto, L.M., Vicente, A., Domingues, L. and Teixeira, J.A. et al. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv., 28, 817–830.
Zurück zum Zitat Nagle, N. and Lemke, P. (1990). Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol., 24–25, 355–361.CrossRef Nagle, N. and Lemke, P. (1990). Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol., 24–25, 355–361.CrossRef
Zurück zum Zitat Park, J.-H., Hong, J.-Y., Jang, H.C., Oh, S.G., Kim, S.-H., Yoon, J.-J. and Kim, Y.J. (2012). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108, 83–88.CrossRef Park, J.-H., Hong, J.-Y., Jang, H.C., Oh, S.G., Kim, S.-H., Yoon, J.-J. and Kim, Y.J. (2012). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108, 83–88.CrossRef
Zurück zum Zitat Ross, A.B., Jones, J.M., Kubacki, M.L. and Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol., 99, 6494–6504.CrossRef Ross, A.B., Jones, J.M., Kubacki, M.L. and Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol., 99, 6494–6504.CrossRef
Zurück zum Zitat Sarkar, N., Ghosh, S.K., Bannerjee, S. and Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renew. Energy, 37, 19–27.CrossRef Sarkar, N., Ghosh, S.K., Bannerjee, S. and Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renew. Energy, 37, 19–27.CrossRef
Zurück zum Zitat Sheridan, C. (2009). Making green. Nat. Biotechnol., 27, 1074–1076.CrossRef Sheridan, C. (2009). Making green. Nat. Biotechnol., 27, 1074–1076.CrossRef
Zurück zum Zitat Singh, A., Nigam, P.S. and Murphy, J.D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol., 102, 10–16.CrossRef Singh, A., Nigam, P.S. and Murphy, J.D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol., 102, 10–16.CrossRef
Zurück zum Zitat Singh, S., Kate, B.N. and Banerjee, U.C. (2008). Bioactive Compounds from Cyanobacteria and Microalgae: An Overview. Crit. Rev. Biotechnol., 25(3), 75–95. Singh, S., Kate, B.N. and Banerjee, U.C. (2008). Bioactive Compounds from Cyanobacteria and Microalgae: An Overview. Crit. Rev. Biotechnol., 25(3), 75–95.
Zurück zum Zitat Suppes, G. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal. A Gen., 257, 213–223.CrossRef Suppes, G. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal. A Gen., 257, 213–223.CrossRef
Zurück zum Zitat Talebnia, F., Karakashev, D. and Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., 101, 4744–4753.CrossRef Talebnia, F., Karakashev, D. and Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., 101, 4744–4753.CrossRef
Zurück zum Zitat Vyas, A.P., Verma, J.L. and Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89, 1–9.CrossRef Vyas, A.P., Verma, J.L. and Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89, 1–9.CrossRef
Zurück zum Zitat Waltz, E. (2009). Biotech’s green gold? Nat. Biotechnol., 27, 15–18.CrossRef Waltz, E. (2009). Biotech’s green gold? Nat. Biotechnol., 27, 15–18.CrossRef
Zurück zum Zitat Wang, J., Kim, Y.M., Rhee, H.S., Lee, M.W. and Park, J.M. (2013). Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3. Bioresour. Technol., 135, 199–206.CrossRef Wang, J., Kim, Y.M., Rhee, H.S., Lee, M.W. and Park, J.M. (2013). Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3. Bioresour. Technol., 135, 199–206.CrossRef
Zurück zum Zitat Xu, H., Miao, X. and Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol., 126, 499–507.CrossRef Xu, H., Miao, X. and Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol., 126, 499–507.CrossRef
Zurück zum Zitat Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y. and Oh, H.-M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101, 71–74.CrossRef Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y. and Oh, H.-M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101, 71–74.CrossRef
Zurück zum Zitat Yoon, S.H. and Lee, C.S. (2011). Lean Combustion and Emission Characteristics of Bioethanol and Its Blends in a Spark Ignition (SI) Engine. Energy & Fuels, 25, 3484–3492.CrossRef Yoon, S.H. and Lee, C.S. (2011). Lean Combustion and Emission Characteristics of Bioethanol and Its Blends in a Spark Ignition (SI) Engine. Energy & Fuels, 25, 3484–3492.CrossRef
Zurück zum Zitat Younesi, H., Najafpour, G. and Mohamed, A.R. (2005). Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J., 27, 110–119.CrossRef Younesi, H., Najafpour, G. and Mohamed, A.R. (2005). Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J., 27, 110–119.CrossRef
Zurück zum Zitat Yoza, B.A. and Masutani, E.M. (2013). The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environ. Technol., 34, 1859–1867.CrossRef Yoza, B.A. and Masutani, E.M. (2013). The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environ. Technol., 34, 1859–1867.CrossRef
Zurück zum Zitat Zabeti, M., Daud, W.M.A.W. and Aroua, M.K. (2010). Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Process. Technol., 91, 243–248.CrossRef Zabeti, M., Daud, W.M.A.W. and Aroua, M.K. (2010). Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Process. Technol., 91, 243–248.CrossRef
Metadaten
Titel
Liquid Fuels Production from Algal Biomass
verfasst von
Shantonu Roy
Debabrata Das
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22813-6_13