Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Literature Review and Research Background

verfasst von : Cheng-Meng Chen

Erschienen in: Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene, a two-dimensional crystal of sp2 hybridized carbon atoms which are one-atom thick, is the thinnest artificial material at present. It is the basic building block for fullerenes (0D), carbon nanotube (1D), and graphite (3D) (Fig. 1.1) (Geim in and Novoselov Nat Mater 6:183–91, [1]).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.CrossRef Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.CrossRef
2.
Zurück zum Zitat Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater. 2010;22(22):2392–415.CrossRef Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater. 2010;22(22):2392–415.CrossRef
3.
Zurück zum Zitat Wallace PR. Erratum: the band theory of graphite. Phys Rev. 1947;72(3):258. CrossRef Wallace PR. Erratum: the band theory of graphite. Phys Rev. 1947;72(3):258. CrossRef
4.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.CrossRef
5.
Zurück zum Zitat Geim AK. Random walk to graphene (Nobel Lecture). Angew Chem Int Ed. 2011;50(31):6966–85.CrossRef Geim AK. Random walk to graphene (Nobel Lecture). Angew Chem Int Ed. 2011;50(31):6966–85.CrossRef
6.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRef Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRef
7.
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–24.CrossRef Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–24.CrossRef
9.
Zurück zum Zitat Hu YH, Wang H, Hu B. Thinnest two-dimensional nanomaterial-graphene for solar energy. ChemSusChem. 2010;3(7):782–96.CrossRef Hu YH, Wang H, Hu B. Thinnest two-dimensional nanomaterial-graphene for solar energy. ChemSusChem. 2010;3(7):782–96.CrossRef
10.
Zurück zum Zitat Luo B, Liu S, Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small. 2011;8(5):630–46.CrossRef Luo B, Liu S, Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small. 2011;8(5):630–46.CrossRef
11.
Zurück zum Zitat Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48(8):2127–50.CrossRef Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48(8):2127–50.CrossRef
12.
Zurück zum Zitat Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23(9):1089–115.CrossRef Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23(9):1089–115.CrossRef
13.
Zurück zum Zitat Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010;6(6):711–23.CrossRef Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010;6(6):711–23.CrossRef
14.
Zurück zum Zitat Koch KR, Krause PF. Oxidation by Mn2O7-an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J Chem Educ. 1982;59(11):973–4.CrossRef Koch KR, Krause PF. Oxidation by Mn2O7-an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J Chem Educ. 1982;59(11):973–4.CrossRef
15.
Zurück zum Zitat Wissler M. Graphite and carbon powders for electrochemical applications. J Power Sour. 2006;156(2):142–50.CrossRef Wissler M. Graphite and carbon powders for electrochemical applications. J Power Sour. 2006;156(2):142–50.CrossRef
16.
Zurück zum Zitat Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater. 2006;18(11):2740–9.CrossRef Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater. 2006;18(11):2740–9.CrossRef
17.
Zurück zum Zitat Scholz W, Boehm HP. Graphite Oxide. 6. Structure of graphite oxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie 1969; 369(3–6): 327. Scholz W, Boehm HP. Graphite Oxide. 6. Structure of graphite oxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie 1969; 369(3–6): 327.
18.
Zurück zum Zitat Nakajima T, Mabuchi A, Hagiwara R. A new structure model of graphite oxide. Carbon. 1988;26(3):357–61.CrossRef Nakajima T, Mabuchi A, Hagiwara R. A new structure model of graphite oxide. Carbon. 1988;26(3):357–61.CrossRef
19.
Zurück zum Zitat Lerf A, He HY, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B. 1998;102(23):4477–82.CrossRef Lerf A, He HY, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B. 1998;102(23):4477–82.CrossRef
20.
Zurück zum Zitat He HY, Riedl T, Lerf A, Klinowski J. Solid-state NMR studies of the structure of graphite oxide. J Phys Chem. 1996;100(51):19954–8.CrossRef He HY, Riedl T, Lerf A, Klinowski J. Solid-state NMR studies of the structure of graphite oxide. J Phys Chem. 1996;100(51):19954–8.CrossRef
21.
Zurück zum Zitat Lerf A, He HY, Riedl T, Forster M, Klinowski J. C-13 and H-1 MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 1997;101:857–62.CrossRef Lerf A, He HY, Riedl T, Forster M, Klinowski J. C-13 and H-1 MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 1997;101:857–62.CrossRef
22.
Zurück zum Zitat Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J Physl Chem B. 2006;110(45):22328–38.CrossRef Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J Physl Chem B. 2006;110(45):22328–38.CrossRef
23.
Zurück zum Zitat Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, et al. Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids. 2006;67(5–6):1106–10.CrossRef Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, et al. Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids. 2006;67(5–6):1106–10.CrossRef
24.
Zurück zum Zitat Boehm HP, Scholz W. Der Verpuffungspunkt Des Graphitoxids. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1965; 335(1–2): 74. Boehm HP, Scholz W. Der Verpuffungspunkt Des Graphitoxids. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1965; 335(1–2): 74.
25.
Zurück zum Zitat Rodriguez AM, Jimenez PSV. Some new aspects of graphite oxidation at O-degrees-C in a liquid-medium—a mechanism proposal for oxidation to graphite oxide. Carbon. 1986;24(2):163–7.CrossRef Rodriguez AM, Jimenez PSV. Some new aspects of graphite oxidation at O-degrees-C in a liquid-medium—a mechanism proposal for oxidation to graphite oxide. Carbon. 1986;24(2):163–7.CrossRef
26.
Zurück zum Zitat Hadzi D, Novak A. Infra-red spectra of graphitic oxide. T Faraday Soc. 1955;51(12):1614–20. CrossRef Hadzi D, Novak A. Infra-red spectra of graphitic oxide. T Faraday Soc. 1955;51(12):1614–20. CrossRef
27.
Zurück zum Zitat Daniel RD, Sungjin P, Christopher WB, Rodney SR. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–40.CrossRef Daniel RD, Sungjin P, Christopher WB, Rodney SR. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–40.CrossRef
28.
Zurück zum Zitat He HY, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett. 1998;287(1–2):53–6.CrossRef He HY, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett. 1998;287(1–2):53–6.CrossRef
29.
Zurück zum Zitat Hofmann C, Frenzel A, Csalan E. The constitution of graphite acid and its reactions. Liebigs Ann Chem. 1934;510:1–41.CrossRef Hofmann C, Frenzel A, Csalan E. The constitution of graphite acid and its reactions. Liebigs Ann Chem. 1934;510:1–41.CrossRef
30.
Zurück zum Zitat Cai WW, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, et al. Synthesis and solid-state NMR structural characterization of (13)C-labeled graphite oxide. Science. 2008;321(5897):1815–7.CrossRef Cai WW, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, et al. Synthesis and solid-state NMR structural characterization of (13)C-labeled graphite oxide. Science. 2008;321(5897):1815–7.CrossRef
31.
Zurück zum Zitat Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.CrossRef Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.CrossRef
32.
Zurück zum Zitat Szabo T, Berkesi O, Dekany I. DRIFT study of deuterium-exchanged graphite oxide. Carbon. 2005;43(15):3186–9.CrossRef Szabo T, Berkesi O, Dekany I. DRIFT study of deuterium-exchanged graphite oxide. Carbon. 2005;43(15):3186–9.CrossRef
33.
Zurück zum Zitat Szabo T, Tombacz E, Illes E, Dekany I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon. 2006;44(3):537–45.CrossRef Szabo T, Tombacz E, Illes E, Dekany I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon. 2006;44(3):537–45.CrossRef
34.
Zurück zum Zitat Boukhvalov DW, Katsnelson MI. Modeling of graphite oxide. J Am Chem Soc. 2008;130(32):10697–701.CrossRef Boukhvalov DW, Katsnelson MI. Modeling of graphite oxide. J Am Chem Soc. 2008;130(32):10697–701.CrossRef
35.
Zurück zum Zitat Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012;50(9):3210–28.CrossRef Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012;50(9):3210–28.CrossRef
36.
Zurück zum Zitat Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24(19):10560–4.CrossRef Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24(19):10560–4.CrossRef
37.
Zurück zum Zitat Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2(3):463–70.CrossRef Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2(3):463–70.CrossRef
38.
Zurück zum Zitat Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7(11):3499–503.CrossRef Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7(11):3499–503.CrossRef
39.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442(7100):282–6.CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442(7100):282–6.CrossRef
40.
Zurück zum Zitat Li ZY, Zhang WH, Luo Y, Yang JL, Hou JG. How graphene is cut upon oxidation? J Am Chem Soc 2009; 131(18): 6320. Li ZY, Zhang WH, Luo Y, Yang JL, Hou JG. How graphene is cut upon oxidation? J Am Chem Soc 2009; 131(18): 6320.
41.
Zurück zum Zitat Zhang L, Liang JJ, Huang Y, Ma YF, Wang Y, Chen YS. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon. 2009;47(14):3365–8.CrossRef Zhang L, Liang JJ, Huang Y, Ma YF, Wang Y, Chen YS. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon. 2009;47(14):3365–8.CrossRef
42.
Zurück zum Zitat Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett. 2008;8(6):1679–82.CrossRef Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett. 2008;8(6):1679–82.CrossRef
43.
Zurück zum Zitat Wu ZS, Ren WC, Gao LB, Liu BL, Jiang CB, Cheng HM. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009;47(2):493–9.CrossRef Wu ZS, Ren WC, Gao LB, Liu BL, Jiang CB, Cheng HM. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009;47(2):493–9.CrossRef
44.
Zurück zum Zitat Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.CrossRef
45.
Zurück zum Zitat McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater. 2007;19(18):4396–404.CrossRef McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater. 2007;19(18):4396–404.CrossRef
46.
Zurück zum Zitat Wu ZS, Ren WC, Gao LB, Zhao JP, Chen ZP, Liu BL, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano. 2009;3(2):411–7.CrossRef Wu ZS, Ren WC, Gao LB, Zhao JP, Chen ZP, Liu BL, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano. 2009;3(2):411–7.CrossRef
47.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8(1):36–41.CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8(1):36–41.CrossRef
48.
Zurück zum Zitat Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8(1):323–7.CrossRef Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8(1):323–7.CrossRef
49.
Zurück zum Zitat Zhao JP, Pei SF, Ren WC, Gao LB, Cheng HM. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano. 2010;4(9):5245–52.CrossRef Zhao JP, Pei SF, Ren WC, Gao LB, Cheng HM. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano. 2010;4(9):5245–52.CrossRef
50.
Zurück zum Zitat Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater. 2009;19(16):2577–83.CrossRef Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater. 2009;19(16):2577–83.CrossRef
51.
Zurück zum Zitat Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.CrossRef Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.CrossRef
52.
Zurück zum Zitat Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 2010; 22(6): 734. Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 2010; 22(6): 734.
53.
Zurück zum Zitat Li XL, Wang HL, Robinson JT, Sanchez H, Diankov G, Dai HJ. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc. 2009;131(43):15939–44.CrossRef Li XL, Wang HL, Robinson JT, Sanchez H, Diankov G, Dai HJ. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc. 2009;131(43):15939–44.CrossRef
54.
Zurück zum Zitat Gengler RYN, Veligura A, Enotiadis A, Diamanti EK, Gournis D, Józsa C, et al. Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach. Small. 2010;6(1):35–9.CrossRef Gengler RYN, Veligura A, Enotiadis A, Diamanti EK, Gournis D, Józsa C, et al. Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach. Small. 2010;6(1):35–9.CrossRef
55.
Zurück zum Zitat Su Q, Pang SP, Alijani V, Li C, Feng XL, Mullen K. Composites of graphene with large aromatic molecules. Adv Mater 2009; 21(31): 3191. Su Q, Pang SP, Alijani V, Li C, Feng XL, Mullen K. Composites of graphene with large aromatic molecules. Adv Mater 2009; 21(31): 3191.
56.
Zurück zum Zitat Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.CrossRef Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.CrossRef
57.
Zurück zum Zitat Das A, Chakraborty B, Sood AK. Raman spectroscopy of graphene on different substrates and influence of defects. B Mater Sci. 2008;31(3):579–84.CrossRef Das A, Chakraborty B, Sood AK. Raman spectroscopy of graphene on different substrates and influence of defects. B Mater Sci. 2008;31(3):579–84.CrossRef
58.
Zurück zum Zitat Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.CrossRef Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.CrossRef
59.
Zurück zum Zitat Warner JH, Rummeli MH, Ge L, Gemming T, Montanari B, Harrison NM, et al. Structural transformations in graphene studied with high spatial and temporal resolution. Nat Nanotechnol. 2009;4(8):500–4.CrossRef Warner JH, Rummeli MH, Ge L, Gemming T, Montanari B, Harrison NM, et al. Structural transformations in graphene studied with high spatial and temporal resolution. Nat Nanotechnol. 2009;4(8):500–4.CrossRef
60.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.CrossRef
61.
Zurück zum Zitat Kotov NA, Dekany I, Fendler JH. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 1996; 8(8): 637. Kotov NA, Dekany I, Fendler JH. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 1996; 8(8): 637.
62.
Zurück zum Zitat Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem. 2006;16(2):155–8.CrossRef Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem. 2006;16(2):155–8.CrossRef
63.
Zurück zum Zitat Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–5.CrossRef Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–5.CrossRef
64.
Zurück zum Zitat Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C. 2010;114(14):6426–32.CrossRef Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C. 2010;114(14):6426–32.CrossRef
65.
Zurück zum Zitat Zhu YW, Cai WW, Piner RD, Velamakanni A, Ruoff RS. Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett. 2009;95(10):103104–7.CrossRef Zhu YW, Cai WW, Piner RD, Velamakanni A, Ruoff RS. Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett. 2009;95(10):103104–7.CrossRef
66.
Zurück zum Zitat Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei ZQ, Sheehan P, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 2008;8(10):3441–5.CrossRef Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei ZQ, Sheehan P, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 2008;8(10):3441–5.CrossRef
67.
Zurück zum Zitat Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for device applications. Nano Lett. 2007;7(11):3394–8.CrossRef Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for device applications. Nano Lett. 2007;7(11):3394–8.CrossRef
68.
Zurück zum Zitat Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 2008; 20(18): 3557. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 2008; 20(18): 3557.
69.
Zurück zum Zitat He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F, et al. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano; 4(6): 3201–8. He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F, et al. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano; 4(6): 3201–8.
70.
Zurück zum Zitat Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FYC, et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C. 2009;113(25):10842–6.CrossRef Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FYC, et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C. 2009;113(25):10842–6.CrossRef
71.
Zurück zum Zitat Qi XY, Pu KY, Li H, Zhou XZ, Wu SX, Fan QL, et al. Amphiphilic graphene composites. Angew Chem Int Ed. 2010;49(49):9426–9.CrossRef Qi XY, Pu KY, Li H, Zhou XZ, Wu SX, Fan QL, et al. Amphiphilic graphene composites. Angew Chem Int Ed. 2010;49(49):9426–9.CrossRef
72.
Zurück zum Zitat Yin ZY, Wu SX, Zhou XZ, Huang X, Zhang QC, Boey F, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small. 2010;6(2):307–12.CrossRef Yin ZY, Wu SX, Zhou XZ, Huang X, Zhang QC, Boey F, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small. 2010;6(2):307–12.CrossRef
73.
Zurück zum Zitat Qi XY, Pu KY, Zhou XZ, Li H, Liu B, Boey F, et al. Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small. 2010;6(5):663–9.CrossRef Qi XY, Pu KY, Zhou XZ, Li H, Liu B, Boey F, et al. Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small. 2010;6(5):663–9.CrossRef
74.
Zurück zum Zitat He QY, Wu SX, Gao S, Cao XH, Yin ZY, Li H, et al. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano. 2011;5(6):5038–44.CrossRef He QY, Wu SX, Gao S, Cao XH, Yin ZY, Li H, et al. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano. 2011;5(6):5038–44.CrossRef
75.
Zurück zum Zitat Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater. 2009;19(12):1987–92.CrossRef Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater. 2009;19(12):1987–92.CrossRef
76.
Zurück zum Zitat Periasamy M, Thirumalaikumar P. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J Organomet Chem. 2000;609(1–2):137–51. CrossRef Periasamy M, Thirumalaikumar P. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J Organomet Chem. 2000;609(1–2):137–51. CrossRef
77.
Zurück zum Zitat Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466–74.CrossRef Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466–74.CrossRef
78.
Zurück zum Zitat Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010;1:73.CrossRef Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010;1:73.CrossRef
79.
Zurück zum Zitat Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112(22):8192–5.CrossRef Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112(22):8192–5.CrossRef
80.
Zurück zum Zitat Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater. 2008;20(23):4490–3.CrossRef Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater. 2008;20(23):4490–3.CrossRef
81.
Zurück zum Zitat Zhou XJ, Zhang JL, Wu HX, Yang HJ, Zhang JY, Guo SW. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C. 2011;115(24):11957–61.CrossRef Zhou XJ, Zhang JL, Wu HX, Yang HJ, Zhang JY, Guo SW. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C. 2011;115(24):11957–61.CrossRef
82.
Zurück zum Zitat Ballard DGH, Rideal GR. Flexible inorganic films and coatings. J Mater Sci. 1983;18(2):545–61. CrossRef Ballard DGH, Rideal GR. Flexible inorganic films and coatings. J Mater Sci. 1983;18(2):545–61. CrossRef
83.
Zurück zum Zitat Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRef Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRef
84.
Zurück zum Zitat Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano. 2008;2(7):1478–91.CrossRef Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano. 2008;2(7):1478–91.CrossRef
85.
Zurück zum Zitat Ian VL, Thomas HK, Prashant VK. Anchoring semiconductor and metal nanoparticles on a two-dimentional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010;10:577–83.CrossRef Ian VL, Thomas HK, Prashant VK. Anchoring semiconductor and metal nanoparticles on a two-dimentional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010;10:577–83.CrossRef
86.
Zurück zum Zitat Georgios KD, Emmanuel T, George EF. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008;8(10):3166–70.CrossRef Georgios KD, Emmanuel T, George EF. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008;8(10):3166–70.CrossRef
87.
Zurück zum Zitat Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir. 2003;19(15):6050–5.CrossRef Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir. 2003;19(15):6050–5.CrossRef
88.
Zurück zum Zitat Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008;3(5):270–4.CrossRef Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008;3(5):270–4.CrossRef
89.
Zurück zum Zitat Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW. Reduction of graphene oxide via L-ascorbic acid. Chem Commun. 2010;46(7):1112–4.CrossRef Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW. Reduction of graphene oxide via L-ascorbic acid. Chem Commun. 2010;46(7):1112–4.CrossRef
90.
Zurück zum Zitat Cote LJ, Kim F, Huang JX. Langmuir-blodgett assembly of graphite oxide single layers. J Am Chem Soc. 2009;131(3):1043–9.CrossRef Cote LJ, Kim F, Huang JX. Langmuir-blodgett assembly of graphite oxide single layers. J Am Chem Soc. 2009;131(3):1043–9.CrossRef
91.
Zurück zum Zitat Brunetaud X, Divet L, Damidot D. Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties. Cement Concrete Res. 2008;38(11):1343–8.CrossRef Brunetaud X, Divet L, Damidot D. Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties. Cement Concrete Res. 2008;38(11):1343–8.CrossRef
92.
Zurück zum Zitat Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST. Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 2010; 22(8): 892. Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST. Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 2010; 22(8): 892.
93.
Zurück zum Zitat Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions—Enhancing mechanical properties via chemical cross-linking. ACS Nano. 2008;2(3):572–8.CrossRef Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions—Enhancing mechanical properties via chemical cross-linking. ACS Nano. 2008;2(3):572–8.CrossRef
94.
Zurück zum Zitat Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials. J Appl Phys. 2004;95(8):4335–45.CrossRef Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials. J Appl Phys. 2004;95(8):4335–45.CrossRef
95.
Zurück zum Zitat Seah KHW, Hemanth J, Sharma SC. Tensile strength and hardness of sub-zero chilled cast iron. Mater Design. 1995;16(3):175–9.CrossRef Seah KHW, Hemanth J, Sharma SC. Tensile strength and hardness of sub-zero chilled cast iron. Mater Design. 1995;16(3):175–9.CrossRef
96.
Zurück zum Zitat Chen CM, Yang Q-H, Yang Y, Lv W, Wen Y, Hou P-X, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.CrossRef Chen CM, Yang Q-H, Yang Y, Lv W, Wen Y, Hou P-X, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.CrossRef
97.
Zurück zum Zitat Li D, Kaner RB. Materials science-graphene-based materials. Science. 2008;320(5880):1170–1. CrossRef Li D, Kaner RB. Materials science-graphene-based materials. Science. 2008;320(5880):1170–1. CrossRef
98.
Zurück zum Zitat Liu ZH, Wang ZM, Yang XJ, Ooi KT. Intercalation of organic ammonium ions into layered graphite oxide. Langmuir. 2002;18(12):4926–32.CrossRef Liu ZH, Wang ZM, Yang XJ, Ooi KT. Intercalation of organic ammonium ions into layered graphite oxide. Langmuir. 2002;18(12):4926–32.CrossRef
99.
Zurück zum Zitat Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.CrossRef Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.CrossRef
100.
Zurück zum Zitat Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009;9(4):1593–7.CrossRef Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009;9(4):1593–7.CrossRef
101.
Zurück zum Zitat Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater. 2008;20(21):6592–4.CrossRef Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater. 2008;20(21):6592–4.CrossRef
102.
Zurück zum Zitat Xu YX, Bai H, Lu GW, Li C, Shi GQ. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 2008; 130(18): 5856. Xu YX, Bai H, Lu GW, Li C, Shi GQ. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 2008; 130(18): 5856.
103.
Zurück zum Zitat El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012;335(6074):1326–30.CrossRef El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012;335(6074):1326–30.CrossRef
104.
Zurück zum Zitat Obraztsov AN. Chemical vapour deposition making graphene on a large scale. Nat Nanotechnol. 2009;4(4):212–3.CrossRef Obraztsov AN. Chemical vapour deposition making graphene on a large scale. Nat Nanotechnol. 2009;4(4):212–3.CrossRef
105.
Zurück zum Zitat Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater. 2009;8(3):203–7.CrossRef Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater. 2009;8(3):203–7.CrossRef
106.
Zurück zum Zitat Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude DK, et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys Rev Lett 2008; 101(26). Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude DK, et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys Rev Lett 2008; 101(26).
107.
Zurück zum Zitat Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 2009; 81(1): 109–62. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 2009; 81(1): 109–62.
108.
Zurück zum Zitat Wu JB, Becerril HA, Bao ZN, Liu ZF, Chen YS, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 2008; 92(26). Wu JB, Becerril HA, Bao ZN, Liu ZF, Chen YS, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 2008; 92(26).
109.
Zurück zum Zitat Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys. 2007;9(15):1774–85.CrossRef Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys. 2007;9(15):1774–85.CrossRef
110.
Zurück zum Zitat Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. J Mater Chem. 2010;20(29):5983–92.CrossRef Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. J Mater Chem. 2010;20(29):5983–92.CrossRef
111.
Zurück zum Zitat Conway BE, editor. Electrochemical supercapacitors: scientific fundamentals and technological applications. New York: Kluwer Academic/Plenum Publisher; 1999. Conway BE, editor. Electrochemical supercapacitors: scientific fundamentals and technological applications. New York: Kluwer Academic/Plenum Publisher; 1999.
112.
Zurück zum Zitat Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006;6(12):2690–5.CrossRef Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006;6(12):2690–5.CrossRef
113.
Zurück zum Zitat Zhang LL, Wei TX, Wang WJ, Zhao XS. Manganese oxide-carbon composite as supercapacitor electrode materials. Micropor Mesopor Mat. 2009;123(1–3):260–7.CrossRef Zhang LL, Wei TX, Wang WJ, Zhao XS. Manganese oxide-carbon composite as supercapacitor electrode materials. Micropor Mesopor Mat. 2009;123(1–3):260–7.CrossRef
114.
Zurück zum Zitat Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008;8(9):2664–8.CrossRef Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008;8(9):2664–8.CrossRef
115.
Zurück zum Zitat Choi D, Blomgren GE, Kumta PN. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 2006; 18(9): 1178. Choi D, Blomgren GE, Kumta PN. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 2006; 18(9): 1178.
116.
Zurück zum Zitat Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater. 2007;17(16):3083–7.CrossRef Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater. 2007;17(16):3083–7.CrossRef
117.
Zurück zum Zitat Zhang LL, Li S, Zhang JT, Guo PZ, Zheng JT, Zhao XS. Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater. 2010;22(3):1195–202.CrossRef Zhang LL, Li S, Zhang JT, Guo PZ, Zheng JT, Zhao XS. Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater. 2010;22(3):1195–202.CrossRef
118.
Zurück zum Zitat Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon. 2008;46(11):1475–88.CrossRef Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon. 2008;46(11):1475–88.CrossRef
119.
Zurück zum Zitat Pumera M. Graphene-based nanomaterials for energy storage. Ener Environ Sci. 2011;4(3):668–74.CrossRef Pumera M. Graphene-based nanomaterials for energy storage. Ener Environ Sci. 2011;4(3):668–74.CrossRef
120.
Zurück zum Zitat Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.CrossRef Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.CrossRef
121.
Zurück zum Zitat Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, et al. Supercapacitor devices based on graphene materials. J Phys Chem C. 2009;113(30):13103–7.CrossRef Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, et al. Supercapacitor devices based on graphene materials. J Phys Chem C. 2009;113(30):13103–7.CrossRef
122.
Zurück zum Zitat Si YC, Samulski ET. Exfoliated graphene separated by platinum nanoparticles. Chem Mater. 2008;20(21):6792–7.CrossRef Si YC, Samulski ET. Exfoliated graphene separated by platinum nanoparticles. Chem Mater. 2008;20(21):6792–7.CrossRef
123.
Zurück zum Zitat Yu DS, Dai LM. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett. 2010;1(2):467–70.CrossRef Yu DS, Dai LM. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett. 2010;1(2):467–70.CrossRef
124.
Zurück zum Zitat Chen S, Zhu JW, Wu XD, Han QF, Wang X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano. 2010;4(5):2822–30.CrossRef Chen S, Zhu JW, Wu XD, Han QF, Wang X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano. 2010;4(5):2822–30.CrossRef
125.
Zurück zum Zitat Wang HL, Casalongue HS, Liang YY, Dai HJ. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc. 2010;132(21):7472–7. CrossRef Wang HL, Casalongue HS, Liang YY, Dai HJ. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc. 2010;132(21):7472–7. CrossRef
126.
Zurück zum Zitat Lu T, Zhang YP, Li HB, Pan LK, Li YL, Sun Z. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochim Acta. 2010;55(13):4170–3.CrossRef Lu T, Zhang YP, Li HB, Pan LK, Li YL, Sun Z. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochim Acta. 2010;55(13):4170–3.CrossRef
127.
Zurück zum Zitat Zhang K, Zhang LL, Zhao XS, Wu JS. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater. 2010;22(4):1392–401.CrossRef Zhang K, Zhang LL, Zhao XS, Wu JS. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater. 2010;22(4):1392–401.CrossRef
128.
Zurück zum Zitat Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRef Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRef
129.
Zurück zum Zitat Murugan AV, Muraliganth T, Manthiram A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater. 2009;21(21):5004–6.CrossRef Murugan AV, Muraliganth T, Manthiram A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater. 2009;21(21):5004–6.CrossRef
130.
Zurück zum Zitat Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon. 2010;48(2):487–93.CrossRef Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon. 2010;48(2):487–93.CrossRef
131.
Zurück zum Zitat Wang HL, Hao QL, Yang XJ, Lu LD, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun. 2009;11(6):1158–61.CrossRef Wang HL, Hao QL, Yang XJ, Lu LD, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun. 2009;11(6):1158–61.CrossRef
132.
Zurück zum Zitat Jeong HK, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, et al. Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. ACS Nano. 2010;4(2):1162–6.CrossRef Jeong HK, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, et al. Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. ACS Nano. 2010;4(2):1162–6.CrossRef
133.
Zurück zum Zitat Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4(4):1963–70.CrossRef Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4(4):1963–70.CrossRef
134.
Zurück zum Zitat Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67.CrossRef Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67.CrossRef
135.
Zurück zum Zitat Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–62.CrossRef Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–62.CrossRef
136.
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930–46.CrossRef Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930–46.CrossRef
137.
Zurück zum Zitat Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–35.CrossRef Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–35.CrossRef
138.
Zurück zum Zitat Park M, Zhang XC, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010;195(24):7904–29.CrossRef Park M, Zhang XC, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010;195(24):7904–29.CrossRef
139.
Zurück zum Zitat Guo P, Song HH, Chen XH. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun. 2009;11(6):1320–4.CrossRef Guo P, Song HH, Chen XH. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun. 2009;11(6):1320–4.CrossRef
140.
Zurück zum Zitat Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, et al. Li storage properties of disordered graphene nanosheets. Chem Mater. 2009;21(14):3136–42.CrossRef Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, et al. Li storage properties of disordered graphene nanosheets. Chem Mater. 2009;21(14):3136–42.CrossRef
141.
Zurück zum Zitat Wang GX, Shen XP, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009;47(8):2049–53.CrossRef Wang GX, Shen XP, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009;47(8):2049–53.CrossRef
142.
Zurück zum Zitat Wang CY, Li D, Too CO, Wallace GG. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater. 2009;21(13):2604–6.CrossRef Wang CY, Li D, Too CO, Wallace GG. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater. 2009;21(13):2604–6.CrossRef
143.
Zurück zum Zitat Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8(8):2277–82. CrossRef Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8(8):2277–82. CrossRef
144.
Zurück zum Zitat Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994;264(5158):556–8.CrossRef Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994;264(5158):556–8.CrossRef
145.
Zurück zum Zitat Dahn JR, Zheng T, Liu YH, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270(5236):590–3.CrossRef Dahn JR, Zheng T, Liu YH, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270(5236):590–3.CrossRef
146.
Zurück zum Zitat Liang MH, Zhi LJ. Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem. 2009;19(33):5871–8.CrossRef Liang MH, Zhi LJ. Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem. 2009;19(33):5871–8.CrossRef
147.
Zurück zum Zitat Wang S, Chia PJ, Chua LL, Zhao LH, Png RQ, Sivaramakrishnan S, et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv Mater 2008; 20(18): 3440. Wang S, Chia PJ, Chua LL, Zhao LH, Png RQ, Sivaramakrishnan S, et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv Mater 2008; 20(18): 3440.
148.
Zurück zum Zitat Radovic LR, Bockrath B. On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J Am Chem Soc. 2005;127(16):5917–27.CrossRef Radovic LR, Bockrath B. On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J Am Chem Soc. 2005;127(16):5917–27.CrossRef
149.
Zurück zum Zitat Paek SM, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009;9(1):72–5.CrossRef Paek SM, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009;9(1):72–5.CrossRef
150.
Zurück zum Zitat Wang DH, Kou R, Choi D, Yang ZG, Nie ZM, Li J, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano. 2010;4(3):1587–95.CrossRef Wang DH, Kou R, Choi D, Yang ZG, Nie ZM, Li J, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano. 2010;4(3):1587–95.CrossRef
151.
Zurück zum Zitat Yao J, Shen XP, Wang B, Liu HK, Wang GX. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun. 2009;11(10):1849–52.CrossRef Yao J, Shen XP, Wang B, Liu HK, Wang GX. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun. 2009;11(10):1849–52.CrossRef
152.
Zurück zum Zitat Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, et al. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem. 2010;20(26):5462–7.CrossRef Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, et al. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem. 2010;20(26):5462–7.CrossRef
153.
Zurück zum Zitat Li YM, Lv XJ, Lu J, Li JH. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C. 2010;114(49):21770–4.CrossRef Li YM, Lv XJ, Lu J, Li JH. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C. 2010;114(49):21770–4.CrossRef
154.
Zurück zum Zitat Du ZF, Yin XM, Zhang M, Hao QY, Wang YG, Wang TH. In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett. 2010;64(19):2076–9.CrossRef Du ZF, Yin XM, Zhang M, Hao QY, Wang YG, Wang TH. In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett. 2010;64(19):2076–9.CrossRef
155.
Zurück zum Zitat Yang SB, Feng XL, Mullen K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 2011; 23(31): 3575. Yang SB, Feng XL, Mullen K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 2011; 23(31): 3575.
156.
Zurück zum Zitat Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng XL, et al. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem. 2010;3(2):236–9.CrossRef Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng XL, et al. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem. 2010;3(2):236–9.CrossRef
157.
Zurück zum Zitat Yang SB, Feng XL, Ivanovici S, Mullen K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew Chem Int Ed. 2010;49(45):8408–11.CrossRef Yang SB, Feng XL, Ivanovici S, Mullen K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew Chem Int Ed. 2010;49(45):8408–11.CrossRef
158.
Zurück zum Zitat Kim H, Seo DH, Kim SW, Kim J, Kang K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon. 2011;49(1):326–32.CrossRef Kim H, Seo DH, Kim SW, Kim J, Kang K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon. 2011;49(1):326–32.CrossRef
159.
Zurück zum Zitat Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978–80.CrossRef Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978–80.CrossRef
160.
Zurück zum Zitat Li BJ, Cao HQ, Shao J, Qu MZ, Warner JH. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J Mater Chem. 2011;21(13):5069–75.CrossRef Li BJ, Cao HQ, Shao J, Qu MZ, Warner JH. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J Mater Chem. 2011;21(13):5069–75.CrossRef
161.
Zurück zum Zitat Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater. 2010;22(18):5306–13.CrossRef Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater. 2010;22(18):5306–13.CrossRef
162.
Zurück zum Zitat Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, et al. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta. 2011;56(5):2306–11.CrossRef Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, et al. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta. 2011;56(5):2306–11.CrossRef
163.
Zurück zum Zitat He YS, Bai DW, Yang XW, Chen J, Liao XZ, Ma ZF. A Co(OH)2-graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun. 2010;12(4):570–3.CrossRef He YS, Bai DW, Yang XW, Chen J, Liao XZ, Ma ZF. A Co(OH)2-graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun. 2010;12(4):570–3.CrossRef
164.
Zurück zum Zitat Wang GX, Wang B, Wang XL, Park J, Dou SX, Ahn H, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem. 2009;19(44):8378–84.CrossRef Wang GX, Wang B, Wang XL, Park J, Dou SX, Ahn H, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem. 2009;19(44):8378–84.CrossRef
165.
Zurück zum Zitat Lee JK, Smith KB, Hayner CM, Kung HH. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun. 2010;46(12):2025–7.CrossRef Lee JK, Smith KB, Hayner CM, Kung HH. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun. 2010;46(12):2025–7.CrossRef
166.
Zurück zum Zitat Wang L, Wang HB, Liu ZH, Xiao C, Dong SM, Han PX, et al. A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics. 2010;181(37–38):1685–9.CrossRef Wang L, Wang HB, Liu ZH, Xiao C, Dong SM, Han PX, et al. A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics. 2010;181(37–38):1685–9.CrossRef
167.
Zurück zum Zitat Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science. 2010;330(6010):1515–20.CrossRef Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science. 2010;330(6010):1515–20.CrossRef
168.
Zurück zum Zitat Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997;276(5317):1395–7.CrossRef Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997;276(5317):1395–7.CrossRef
169.
Zurück zum Zitat Yang SB, Feng XL, Zhi LJ, Cao QA, Maier J, Mullen K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 2010; 22(7): 838. Yang SB, Feng XL, Zhi LJ, Cao QA, Maier J, Mullen K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 2010; 22(7): 838.
170.
Zurück zum Zitat Zhi LJ, Hu YS, El Hamaoui B, Wang X, Lieberwirth I, Kolb U, et al. Precursor-controlled formation of novel carbon/metal and carbon/metal oxide nanocomposites. Adv Mater 2008; 20(9): 1727. Zhi LJ, Hu YS, El Hamaoui B, Wang X, Lieberwirth I, Kolb U, et al. Precursor-controlled formation of novel carbon/metal and carbon/metal oxide nanocomposites. Adv Mater 2008; 20(9): 1727.
171.
Zurück zum Zitat Cui GL, Gu L, Zhi LJ, Kaskhedikar N, van Aken PA, Mullen K, et al. A germanium-carbon nanocomposite material for lithium batteries. Adv Mater. 2008;20(16):3079–83.CrossRef Cui GL, Gu L, Zhi LJ, Kaskhedikar N, van Aken PA, Mullen K, et al. A germanium-carbon nanocomposite material for lithium batteries. Adv Mater. 2008;20(16):3079–83.CrossRef
172.
Zurück zum Zitat Cui GL, Hu YS, Zhi LJ, Wu DQ, Lieberwirth I, Maier J, et al. A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. Small. 2007;3(12):2066–9.CrossRef Cui GL, Hu YS, Zhi LJ, Wu DQ, Lieberwirth I, Maier J, et al. A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. Small. 2007;3(12):2066–9.CrossRef
173.
Zurück zum Zitat Subramanian V, Zhu HW, Wei BQ. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. J Phys Chem B. 2006;110(14):7178–83.CrossRef Subramanian V, Zhu HW, Wei BQ. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. J Phys Chem B. 2006;110(14):7178–83.CrossRef
174.
Zurück zum Zitat Zhi LJ, Wu JS, Li JX, Kolb U, Mullen K. Carbonization of disclike molecules in porous alumina membranes: Toward carbon nanotubes with controlled graphene-layer orientation. Angew Chem Int Ed. 2005;44(14):2120–3.CrossRef Zhi LJ, Wu JS, Li JX, Kolb U, Mullen K. Carbonization of disclike molecules in porous alumina membranes: Toward carbon nanotubes with controlled graphene-layer orientation. Angew Chem Int Ed. 2005;44(14):2120–3.CrossRef
175.
Zurück zum Zitat Mwasilu F, Justo JJ, Kim EK, Do TD, Jung JW. Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration. Renew Sustain Energy Rev. 2014;34:501–16.CrossRef Mwasilu F, Justo JJ, Kim EK, Do TD, Jung JW. Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration. Renew Sustain Energy Rev. 2014;34:501–16.CrossRef
Metadaten
Titel
Literature Review and Research Background
verfasst von
Cheng-Meng Chen
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48676-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.