Skip to main content

2016 | OriginalPaper | Buchkapitel

2. Literature Review

verfasst von : Shane (S.Q.) Xie

Erschienen in: Advanced Robotics for Medical Rehabilitation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A comprehensive literature review on rehabilitation robots is carried out to identify the key issues. The main design requirements and development complications are identified and the various approaches used in past robots are reviewed. It begins with a survey of existing human rehabilitation devices designed for use in human assistance and treatment. An overview of the kinematic and computational biomechanical models of the human limb is also provided. This is followed by a review of the state of the art of interaction control strategies, with primary focus on its application in rehabilitation robots. Finally, the reviewed materials are assimilated in a discussion that highlights issues in rehabilitation robots that require further development, and are hence the subject of investigation for this research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Hogan, H.I. Krebs, J. Charnnarong, P. Srikrishna, A. Sharon, MIT-MANUS: a workstation for manual therapy and training. I, in IEEE International Workshop on Robot and Human Communication, 1992, pp. 161–165 N. Hogan, H.I. Krebs, J. Charnnarong, P. Srikrishna, A. Sharon, MIT-MANUS: a workstation for manual therapy and training. I, in IEEE International Workshop on Robot and Human Communication, 1992, pp. 161–165
2.
Zurück zum Zitat H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003)CrossRef H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003)CrossRef
3.
Zurück zum Zitat C.G. Burgar, P.S. Lum, P.C. Shor, H.F.M. Van Der Loos, Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37, 663–673 (2000) C.G. Burgar, P.S. Lum, P.C. Shor, H.F.M. Van Der Loos, Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37, 663–673 (2000)
4.
Zurück zum Zitat R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, W. Harwin, Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton. Robot. 15, 35–51 (2003)CrossRef R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, W. Harwin, Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton. Robot. 15, 35–51 (2003)CrossRef
5.
Zurück zum Zitat P.S. Lum, C.G. Burgar, M. Van Der Loos, P.C. Shor, M. Majmundar, R. Yap, MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J. Rehabil. Res. Dev. 43, 631–642 (2006)CrossRef P.S. Lum, C.G. Burgar, M. Van Der Loos, P.C. Shor, M. Majmundar, R. Yap, MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J. Rehabil. Res. Dev. 43, 631–642 (2006)CrossRef
6.
Zurück zum Zitat H.I. Krebs, N. Hogan, B.T. Volpe, M.L. Aisen, L. Edelstein, C. Diels, Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol. Health Care 7, 419–423 (1999) H.I. Krebs, N. Hogan, B.T. Volpe, M.L. Aisen, L. Edelstein, C. Diels, Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol. Health Care 7, 419–423 (1999)
7.
Zurück zum Zitat P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, M. Van der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)CrossRef P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, M. Van der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)CrossRef
8.
Zurück zum Zitat P.S. Lum, C.G. Burgar, P.C. Shor, Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 186–194 (2004)CrossRef P.S. Lum, C.G. Burgar, P.C. Shor, Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 186–194 (2004)CrossRef
9.
Zurück zum Zitat S. Coote, B. Murphy, W. Harwin, E. Stokes, The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin. Rehabil. 22, 395–405 (2008)CrossRef S. Coote, B. Murphy, W. Harwin, E. Stokes, The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin. Rehabil. 22, 395–405 (2008)CrossRef
10.
Zurück zum Zitat A. Frisoli, L. Borelli, A. Montagner, S. Marcheschi, C. Procopio, F. Salsedo, M. Bergamasco, M.C. Carboncini, M. Tolaini, B. Rossi, Arm rehabilitation with a robotic exoskeleleton in Virtual Reality, in International Conference on Rehabilitation Robotics, 2007, pp. 631–642 A. Frisoli, L. Borelli, A. Montagner, S. Marcheschi, C. Procopio, F. Salsedo, M. Bergamasco, M.C. Carboncini, M. Tolaini, B. Rossi, Arm rehabilitation with a robotic exoskeleleton in Virtual Reality, in International Conference on Rehabilitation Robotics, 2007, pp. 631–642
11.
Zurück zum Zitat T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRef T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRef
12.
Zurück zum Zitat C. Carignan, J. Tang, S. Roderick, Development of an exoskeleton haptic interface for virtual task training, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3697–3702 C. Carignan, J. Tang, S. Roderick, Development of an exoskeleton haptic interface for virtual task training, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3697–3702
13.
Zurück zum Zitat Y. Ren, H. S. Park, L.Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2009, pp. 761–765 Y. Ren, H. S. Park, L.Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2009, pp. 761–765
14.
Zurück zum Zitat S.J. Ball, I.E. Brown, S.H. Scott, MEDARM: A rehabilitation robot with 5DOF at the shoulder complex, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007 S.J. Ball, I.E. Brown, S.H. Scott, MEDARM: A rehabilitation robot with 5DOF at the shoulder complex, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007
15.
Zurück zum Zitat R.A.R.C. Gopura, K. Kiguchi, Y. Yi, SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 1126–1131 R.A.R.C. Gopura, K. Kiguchi, Y. Yi, SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 1126–1131
16.
Zurück zum Zitat A.H.A. Stienen, E.E.G. Hekman, F.C.T. van der Helm, H. van der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25, 628–633 (2009)CrossRef A.H.A. Stienen, E.E.G. Hekman, F.C.T. van der Helm, H. van der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25, 628–633 (2009)CrossRef
24.
Zurück zum Zitat J.C. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)CrossRef J.C. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)CrossRef
25.
Zurück zum Zitat P. Garrec, J.P. Friconneau, Y. Méasson, Y. Perrot, ABLE, an innovative transparent exoskeleton for the upper-limb, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 1483–1488 P. Garrec, J.P. Friconneau, Y. Méasson, Y. Perrot, ABLE, an innovative transparent exoskeleton for the upper-limb, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 1483–1488
26.
Zurück zum Zitat D.G. Caldwell, N.G. Tsagarakis, S. Kousidou, N. Costa, I. Sarakoglou, “Soft” exoskeletons for upper and lower body rehabilitation—design, control and testing. Int. J. Humanoid Rob. 4, 549–573 (2007)CrossRef D.G. Caldwell, N.G. Tsagarakis, S. Kousidou, N. Costa, I. Sarakoglou, “Soft” exoskeletons for upper and lower body rehabilitation—design, control and testing. Int. J. Humanoid Rob. 4, 549–573 (2007)CrossRef
27.
Zurück zum Zitat S. Kousidou, N. Tsagarakis, D.G. Caldwell, C. Smith, Assistive exoskeleton for task based physiotherapy in 3-dimensional space, in 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, pp. 266–271 S. Kousidou, N. Tsagarakis, D.G. Caldwell, C. Smith, Assistive exoskeleton for task based physiotherapy in 3-dimensional space, in 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, pp. 266–271
28.
Zurück zum Zitat S. Balasubramanian, H.R. Wei, M. Perez, B. Shepard, E. Koeneman, J. Koeneman, J. He, Rupert: an exoskeleton robot for assisting rehabilitation of arm functions, in 2008 Virtual Rehabilitation, IWVR,, 2008, pp. 163–167 S. Balasubramanian, H.R. Wei, M. Perez, B. Shepard, E. Koeneman, J. Koeneman, J. He, Rupert: an exoskeleton robot for assisting rehabilitation of arm functions, in 2008 Virtual Rehabilitation, IWVR,, 2008, pp. 163–167
29.
Zurück zum Zitat A. Roy, H.I. Krebs, S.L. Patterson, T.N. Judkins, I.K. Larry, R.M. Macko, N. Hogan, Measurement of human ankle stiffness using the anklebot, in International Conference on Rehabilitation Robotics, 2007, pp. 356–363 A. Roy, H.I. Krebs, S.L. Patterson, T.N. Judkins, I.K. Larry, R.M. Macko, N. Hogan, Measurement of human ankle stiffness using the anklebot, in International Conference on Rehabilitation Robotics, 2007, pp. 356–363
30.
Zurück zum Zitat K. Bharadwaj, T.G. Sugar, J.B. Koeneman, E.J. Koeneman, Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J. Biomech. Eng. 127, 1009–1013 (2005)CrossRef K. Bharadwaj, T.G. Sugar, J.B. Koeneman, E.J. Koeneman, Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J. Biomech. Eng. 127, 1009–1013 (2005)CrossRef
31.
Zurück zum Zitat D.P. Ferris, J.M. Czerniecki, B. Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21, 189–197 (2005)CrossRef D.P. Ferris, J.M. Czerniecki, B. Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21, 189–197 (2005)CrossRef
32.
Zurück zum Zitat J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D. G. Caldwell, Control strategies for ankle rehabilitation using a high performance ankle exerciser, in IEEE International Conference on Robotics and Automation, 2010, pp. 2221–2227 J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D. G. Caldwell, Control strategies for ankle rehabilitation using a high performance ankle exerciser, in IEEE International Conference on Robotics and Automation, 2010, pp. 2221–2227
33.
Zurück zum Zitat J. Yoon, J. Ryu, A novel reconfigurable ankle/foot rehabilitation robot, in IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 2290–2295 J. Yoon, J. Ryu, A novel reconfigurable ankle/foot rehabilitation robot, in IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 2290–2295
35.
Zurück zum Zitat J.A. Blaya, H. Herr, Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 24–31 (2004)CrossRef J.A. Blaya, H. Herr, Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 24–31 (2004)CrossRef
36.
Zurück zum Zitat G.S. Sawicki, D.P. Ferris, A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J. NeuroEng. Rehabil. 6(23) 2009 G.S. Sawicki, D.P. Ferris, A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J. NeuroEng. Rehabil. 6(23) 2009
37.
Zurück zum Zitat G.S. Sawicki, K.E. Gordon, D.P. Ferris, Powered lower limb orthoses: applications in motor adaptation and rehabilitation, in 2005 IEEE International Conference on Rehabilitation Robotics, 2005, pp. 206–211 G.S. Sawicki, K.E. Gordon, D.P. Ferris, Powered lower limb orthoses: applications in motor adaptation and rehabilitation, in 2005 IEEE International Conference on Rehabilitation Robotics, 2005, pp. 206–211
38.
Zurück zum Zitat A.W. Boehler, K.W. Hollander, T.G. Sugar, D. Shin, Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO), in IEEE International Conference on Robotics and Automation, 2008, pp. 2025–2030 A.W. Boehler, K.W. Hollander, T.G. Sugar, D. Shin, Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO), in IEEE International Conference on Robotics and Automation, 2008, pp. 2025–2030
39.
Zurück zum Zitat A. Agrawal, S.K. Banala, S.K. Agrawal, S.A. Binder-Macleod, Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2005, pp. 41–44 A. Agrawal, S.K. Banala, S.K. Agrawal, S.A. Binder-Macleod, Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2005, pp. 41–44
40.
Zurück zum Zitat J.W. Wheeler, H.I. Krebs, N. Hogan, An ankle robot for a modular gait rehabilitation system, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 1681–1684 J.W. Wheeler, H.I. Krebs, N. Hogan, An ankle robot for a modular gait rehabilitation system, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 1681–1684
41.
Zurück zum Zitat G. Liu, J. Gao, H. Yue, X. Zhang, G. Lu, Design and kinematics simulation of parallel robots for ankle rehabilitation, in IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006, pp. 1109–1113 G. Liu, J. Gao, H. Yue, X. Zhang, G. Lu, Design and kinematics simulation of parallel robots for ankle rehabilitation, in IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006, pp. 1109–1113
42.
Zurück zum Zitat C.E. Syrseloudis, I.Z. Emiris, A parallel robot for ankle rehabilitation-evaluation and its design specifications, in IEEE International Conference on BioInformatics and BioEngineering, 2008 C.E. Syrseloudis, I.Z. Emiris, A parallel robot for ankle rehabilitation-evaluation and its design specifications, in IEEE International Conference on BioInformatics and BioEngineering, 2008
43.
Zurück zum Zitat M. Girone, G. Burdea, M. Bouzit, V. Popescu, J.E. Deutsch, Stewart platform-based system for ankle telerehabilitation. Auton. Robot. 10, 203–212 (2001)CrossRefMATH M. Girone, G. Burdea, M. Bouzit, V. Popescu, J.E. Deutsch, Stewart platform-based system for ankle telerehabilitation. Auton. Robot. 10, 203–212 (2001)CrossRefMATH
44.
Zurück zum Zitat J.S. Dai, T. Zhao, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton. Robot. 16, 207–218 (2004)CrossRef J.S. Dai, T. Zhao, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton. Robot. 16, 207–218 (2004)CrossRef
45.
Zurück zum Zitat C.-C.K. Lin, M.-S. Ju, S.-M. Chen, B.-W. Pan, A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28, 79–86 (2008) C.-C.K. Lin, M.-S. Ju, S.-M. Chen, B.-W. Pan, A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28, 79–86 (2008)
46.
Zurück zum Zitat J.G. Sun, J.Y. Gao, J.H. Zhang, R.H. Tan, Teaching and playback control system for parallel robot for ankle joint rehabilitation, in IEEE International Conference on Industrial Engineering and Engineering Management, 2007, pp. 871–875 J.G. Sun, J.Y. Gao, J.H. Zhang, R.H. Tan, Teaching and playback control system for parallel robot for ankle joint rehabilitation, in IEEE International Conference on Industrial Engineering and Engineering Management, 2007, pp. 871–875
47.
Zurück zum Zitat J. Yoon, J. Ryu, K.-B. Lim, Reconfigurable ankle rehabilitation robot for various exercises. J. Robot. Syst. 22, S15–S33 (2006)CrossRef J. Yoon, J. Ryu, K.-B. Lim, Reconfigurable ankle rehabilitation robot for various exercises. J. Robot. Syst. 22, S15–S33 (2006)CrossRef
48.
Zurück zum Zitat J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D.G. Caldwell, A high-performance redundantly actuated mechanism for ankle rehabilitation. Int. J. Robot. Res. 28, 1216–1227 (2009)CrossRef J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D.G. Caldwell, A high-performance redundantly actuated mechanism for ankle rehabilitation. Int. J. Robot. Res. 28, 1216–1227 (2009)CrossRef
51.
Zurück zum Zitat D.M. Laskin, Temporomandibular Joint Disorders (SigmaMax Publishing, 2001), Chap. 79 D.M. Laskin, Temporomandibular Joint Disorders (SigmaMax Publishing, 2001), Chap. 79
54.
Zurück zum Zitat B. Tondu, Estimating shoulder-complex mobility. Appl. Bion. Biomech. 4, 19–29 (2007)CrossRef B. Tondu, Estimating shoulder-complex mobility. Appl. Bion. Biomech. 4, 19–29 (2007)CrossRef
55.
Zurück zum Zitat J. Yang, K. Abdel-Malek, K. Nebel, Reach envelope of a 9-degree-of-freedom model of the upper extremity. Int. J. Robot. Autom. 20, 240–259 (2005) J. Yang, K. Abdel-Malek, K. Nebel, Reach envelope of a 9-degree-of-freedom model of the upper extremity. Int. J. Robot. Autom. 20, 240–259 (2005)
56.
Zurück zum Zitat P.M. Ludewig, V. Phadke, J.P. Braman, D.R. Hassett, C.J. Cieminski, R.F. Laprade, Motion of the shoulder complex during multiplanar humeral elevation. J. Bone Jt. Surg.—Series A 91, 378–389 (2009)CrossRef P.M. Ludewig, V. Phadke, J.P. Braman, D.R. Hassett, C.J. Cieminski, R.F. Laprade, Motion of the shoulder complex during multiplanar humeral elevation. J. Bone Jt. Surg.—Series A 91, 378–389 (2009)CrossRef
57.
Zurück zum Zitat T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRef T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRef
58.
Zurück zum Zitat C.H. Barnett, J.R. Napier, The axis of rotation at the ankle joint in man; its influence upon the form of the talus and the mobility of the fibula. J. Anat. 86, 1–9 (1952) C.H. Barnett, J.R. Napier, The axis of rotation at the ankle joint in man; its influence upon the form of the talus and the mobility of the fibula. J. Anat. 86, 1–9 (1952)
59.
Zurück zum Zitat A. Lundberg, O.K. Svensson, G. Nemeth, G. Selvik, The axis of rotation of the ankle joint. J. Bone Jt. Surg.—Series B 71, 94–99 (1989) A. Lundberg, O.K. Svensson, G. Nemeth, G. Selvik, The axis of rotation of the ankle joint. J. Bone Jt. Surg.—Series B 71, 94–99 (1989)
60.
Zurück zum Zitat J.R. Engsberg, A biomechanical analysis of the talocalcaneal joint—in vitro. J. Biomech. 20, 429–442 (1987)CrossRef J.R. Engsberg, A biomechanical analysis of the talocalcaneal joint—in vitro. J. Biomech. 20, 429–442 (1987)CrossRef
61.
Zurück zum Zitat D.M. Demarais, R.A. Bachschmidt, G.F. Harris, The instantaneous axis of rotation (IAOR) of the foot and ankle: a self-determining system with implications for rehabilitation medicine application. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 232–238 (2002)CrossRef D.M. Demarais, R.A. Bachschmidt, G.F. Harris, The instantaneous axis of rotation (IAOR) of the foot and ankle: a self-determining system with implications for rehabilitation medicine application. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 232–238 (2002)CrossRef
62.
Zurück zum Zitat N. Ying, W. Kim, Determining dual Euler angles of the ankle complex in vivo using “flock of birds” electromagnetic tracking device. J. Biomech. Eng. 127, 98–107 (2005)CrossRef N. Ying, W. Kim, Determining dual Euler angles of the ankle complex in vivo using “flock of birds” electromagnetic tracking device. J. Biomech. Eng. 127, 98–107 (2005)CrossRef
63.
Zurück zum Zitat A. Leardini, J.J. O’Connor, F. Catani, S. Giannini, A geometric model of the human ankle joint. J. Biomech. 32, 585–591 (1999)CrossRef A. Leardini, J.J. O’Connor, F. Catani, S. Giannini, A geometric model of the human ankle joint. J. Biomech. 32, 585–591 (1999)CrossRef
64.
Zurück zum Zitat J. Apkarian, S. Naumann, B. Cairns, A three-dimensional kinematic and dynamic model of the lower limb. J. Biomech. 22, 143–155 (1989)CrossRef J. Apkarian, S. Naumann, B. Cairns, A three-dimensional kinematic and dynamic model of the lower limb. J. Biomech. 22, 143–155 (1989)CrossRef
65.
Zurück zum Zitat J. Dul, G.E. Johnson, A kinematic model of the human ankle. J. Biomed. Eng. 7, 137–143 (1985)CrossRef J. Dul, G.E. Johnson, A kinematic model of the human ankle. J. Biomed. Eng. 7, 137–143 (1985)CrossRef
66.
Zurück zum Zitat S.H. Scott, D.A. Winter, Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J. Biomech. 26, 1091–1104 (1993)CrossRef S.H. Scott, D.A. Winter, Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J. Biomech. 26, 1091–1104 (1993)CrossRef
67.
Zurück zum Zitat S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)CrossRef S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)CrossRef
68.
Zurück zum Zitat A.J. van den Bogert, G.D. Smith, B.M. Nigg, In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J. Biomech. 27, 1477–1488 (1994)CrossRef A.J. van den Bogert, G.D. Smith, B.M. Nigg, In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J. Biomech. 27, 1477–1488 (1994)CrossRef
69.
Zurück zum Zitat V.T. Inman, The Joints of the Ankle (Williams and Wilkins, Baltimore, 1976) V.T. Inman, The Joints of the Ankle (Williams and Wilkins, Baltimore, 1976)
70.
Zurück zum Zitat R.D. Gregorio, V. Parenti-Castelli, J.J. O’Connor, A. Leardini, Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45, 305–313 (2007)CrossRef R.D. Gregorio, V. Parenti-Castelli, J.J. O’Connor, A. Leardini, Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45, 305–313 (2007)CrossRef
71.
Zurück zum Zitat G.S. Lewis, H.J. Sommer, S.J. Piazza, In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes. J. Biomech. Eng. 128, 596–603 (2006)CrossRef G.S. Lewis, H.J. Sommer, S.J. Piazza, In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes. J. Biomech. Eng. 128, 596–603 (2006)CrossRef
72.
Zurück zum Zitat R.J. de Asla, L. Wan, H.E. Rubash, G. Li, Six dof in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J. Orthop. Res. 24, 1019–1027 (2006)CrossRef R.J. de Asla, L. Wan, H.E. Rubash, G. Li, Six dof in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J. Orthop. Res. 24, 1019–1027 (2006)CrossRef
73.
Zurück zum Zitat P.C. Liacouras, J.S. Wayne, Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129, 811–817 (2007)CrossRef P.C. Liacouras, J.S. Wayne, Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129, 811–817 (2007)CrossRef
74.
Zurück zum Zitat J.T.-M. Cheung, M. Zhang, K.-N. An, Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin. Biomech. 19, 839–846 (2004)CrossRef J.T.-M. Cheung, M. Zhang, K.-N. An, Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin. Biomech. 19, 839–846 (2004)CrossRef
75.
Zurück zum Zitat J.T.-M. Cheung, M. Zhang, A.K.-L. Leung, Y.-B. Fan, Three dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38, 1045–1054 (2005)CrossRef J.T.-M. Cheung, M. Zhang, A.K.-L. Leung, Y.-B. Fan, Three dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38, 1045–1054 (2005)CrossRef
76.
Zurück zum Zitat I.C. Wright, R.R. Neptune, A.J. Van den Bogert, B.M. Nigg, The influence of foot positioning on ankle sprains. J. Biomech. 33, 513–519 (2000)CrossRef I.C. Wright, R.R. Neptune, A.J. Van den Bogert, B.M. Nigg, The influence of foot positioning on ankle sprains. J. Biomech. 33, 513–519 (2000)CrossRef
77.
Zurück zum Zitat I.C. Wright, R.R. Neptune, A.J. Van den Bogert, B.M. Nigg, The effects of ankle compliance and flexibility on ankle sprains. Med. Sci. Sports Exerc. 32, 260–265 (2000)CrossRef I.C. Wright, R.R. Neptune, A.J. Van den Bogert, B.M. Nigg, The effects of ankle compliance and flexibility on ankle sprains. Med. Sci. Sports Exerc. 32, 260–265 (2000)CrossRef
78.
Zurück zum Zitat F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot Manipulator Control, 2nd edn. (Marcel Dekker, New York, 2004) F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot Manipulator Control, 2nd edn. (Marcel Dekker, New York, 2004)
79.
Zurück zum Zitat T. Nef, M. Mihelj, R. Riener, ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45, 887–900 (2007)CrossRef T. Nef, M. Mihelj, R. Riener, ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45, 887–900 (2007)CrossRef
80.
Zurück zum Zitat A. Deneve, S. Moughamir, L. Afilal, J. Zaytoon, Control system design of a 3-DOF upper limbs rehabilitation robot. Comput. Methods Programs Biomed. 89, 202–214 (2008)CrossRef A. Deneve, S. Moughamir, L. Afilal, J. Zaytoon, Control system design of a 3-DOF upper limbs rehabilitation robot. Comput. Methods Programs Biomed. 89, 202–214 (2008)CrossRef
81.
Zurück zum Zitat D. Erol, N. Sarkar, Design and implementation of an assistive controller for rehabilitation robotic systems. Int. J. Adv. Rob. Syst. 4, 271–278 (2007) D. Erol, N. Sarkar, Design and implementation of an assistive controller for rehabilitation robotic systems. Int. J. Adv. Rob. Syst. 4, 271–278 (2007)
82.
Zurück zum Zitat C.J. Kempf, S. Kobayashi, Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans. Control Syst. Technol. 7, 513–526 (1999)CrossRef C.J. Kempf, S. Kobayashi, Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans. Control Syst. Technol. 7, 513–526 (1999)CrossRef
83.
Zurück zum Zitat Y. Wang, Z. Xiong, H. Ding, X. Zhu, Nonlinear friction compensation and disturbance observer for a high-speed motion platform, in International Conference on Robotics and Automation, New Ordleans, LA, 2004, pp. 4515–4520 Y. Wang, Z. Xiong, H. Ding, X. Zhu, Nonlinear friction compensation and disturbance observer for a high-speed motion platform, in International Conference on Robotics and Automation, New Ordleans, LA, 2004, pp. 4515–4520
84.
Zurück zum Zitat C.H. An, J.M. Hollerbach, Dynamic stability issues in force control of manipulators, in IEEE International Conference on Robotics and Automation, 1987, pp. 890–896 C.H. An, J.M. Hollerbach, Dynamic stability issues in force control of manipulators, in IEEE International Conference on Robotics and Automation, 1987, pp. 890–896
86.
Zurück zum Zitat J.E. Colgate, N. Hogan, An analysis of contact instability in terms of passive physical equivalents, in IEEE International Conference on Robotics and Automation, 1989, pp. 404–409 J.E. Colgate, N. Hogan, An analysis of contact instability in terms of passive physical equivalents, in IEEE International Conference on Robotics and Automation, 1989, pp. 404–409
87.
Zurück zum Zitat S.P. Buerger, N. Hogan, Relaxing passivity for human-robot interaction, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 4570–4575 S.P. Buerger, N. Hogan, Relaxing passivity for human-robot interaction, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 4570–4575
88.
Zurück zum Zitat S.P. Buerger, N. Hogan, Complementary stability and loop shaping for improved human–robot interaction. IEEE Trans. Rob. 23, 232–244 (2007)CrossRef S.P. Buerger, N. Hogan, Complementary stability and loop shaping for improved human–robot interaction. IEEE Trans. Rob. 23, 232–244 (2007)CrossRef
89.
Zurück zum Zitat T. Murakami, F. Yu, K. Ohnishi, Torque sensorless control in multidegree-of-freedom manipulator. IEEE Trans. Ind. Electron. 40, 259–265 (1993)CrossRef T. Murakami, F. Yu, K. Ohnishi, Torque sensorless control in multidegree-of-freedom manipulator. IEEE Trans. Ind. Electron. 40, 259–265 (1993)CrossRef
90.
Zurück zum Zitat S. Katsura, Y. Matsumoto, K. Ohnishi, Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Ind. Electron. 53, 922–928 (2006)CrossRef S. Katsura, Y. Matsumoto, K. Ohnishi, Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Ind. Electron. 53, 922–928 (2006)CrossRef
91.
Zurück zum Zitat K. Kong, M. Tomizuka, H. Moon, B. Hwang, D. Jeon, Mechanical design and impedance compensation of SUBAR (Sogang University’s Biomedical Assist Robot), in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi’an, China, 2008, pp. 377–382 K. Kong, M. Tomizuka, H. Moon, B. Hwang, D. Jeon, Mechanical design and impedance compensation of SUBAR (Sogang University’s Biomedical Assist Robot), in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi’an, China, 2008, pp. 377–382
92.
Zurück zum Zitat R. Raghu, Modelling surface electromyograms of the human masticatory system, Master’s thesis, The University of Auckland, 2003 R. Raghu, Modelling surface electromyograms of the human masticatory system, Master’s thesis, The University of Auckland, 2003
93.
Zurück zum Zitat S.I. Fox, Muscle: Mechanisms of Contraction and Neural Control, 5th edn. (Wm. C. Brown Publishers, 1996), Chap. 12, pp. 306–341 S.I. Fox, Muscle: Mechanisms of Contraction and Neural Control, 5th edn. (Wm. C. Brown Publishers, 1996), Chap. 12, pp. 306–341
94.
Zurück zum Zitat S.I. Fox, Muscle: Mechanisms of Contraction and Neural Control, 8th edn. (McGraw-Hill Higher Education, 2003), Chap. 12, pp. 324–363 S.I. Fox, Muscle: Mechanisms of Contraction and Neural Control, 8th edn. (McGraw-Hill Higher Education, 2003), Chap. 12, pp. 324–363
95.
Zurück zum Zitat L. S¨ornmo, P. Laguna, The Electromyogram (Academic Press, 2005), Chap. 5, pp. 337–410 L. S¨ornmo, P. Laguna, The Electromyogram (Academic Press, 2005), Chap. 5, pp. 337–410
96.
Zurück zum Zitat R.F. Yazicioglu, T. Torfs, P. Merken, J. Penders, V. Leonov, R. Puers, B. Gyselinckx, C.V. Hoof, Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectron. J. 40(9), 1313–1321 (2009)CrossRef R.F. Yazicioglu, T. Torfs, P. Merken, J. Penders, V. Leonov, R. Puers, B. Gyselinckx, C.V. Hoof, Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectron. J. 40(9), 1313–1321 (2009)CrossRef
97.
Zurück zum Zitat S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(21) 2012 S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(21) 2012
98.
Zurück zum Zitat A. Mohideen, S. Sidek, Development of emg circuit to study the relationship between flexor digitorum superficialis muscle activity and hand grip strength, in 4th International Conference on Mechatronics (ICOM), Kualar Lumpur, pp. 1–7 May 2011 A. Mohideen, S. Sidek, Development of emg circuit to study the relationship between flexor digitorum superficialis muscle activity and hand grip strength, in 4th International Conference on Mechatronics (ICOM), Kualar Lumpur, pp. 1–7 May 2011
99.
Zurück zum Zitat A. Duschau-Wicke, J. Von Zitzewitz, A. Caprez, L. Lunenburger, R. Riener, Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 38–48 (2010)CrossRef A. Duschau-Wicke, J. Von Zitzewitz, A. Caprez, L. Lunenburger, R. Riener, Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 38–48 (2010)CrossRef
100.
Zurück zum Zitat H. Vallery, A. Duschau-Wicke, R. Riener, Generalized elasticities improve patient-cooperative control of rehabilitation robots, in 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, 2009, pp. 535–541 H. Vallery, A. Duschau-Wicke, R. Riener, Generalized elasticities improve patient-cooperative control of rehabilitation robots, in 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, 2009, pp. 535–541
101.
Zurück zum Zitat S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation for rehabilitation with 4-dof robotic orthosis. IEEE Trans. Robot. Autom. 20, 574–582 (2004)CrossRef S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation for rehabilitation with 4-dof robotic orthosis. IEEE Trans. Robot. Autom. 20, 574–582 (2004)CrossRef
102.
Zurück zum Zitat M. Mihelj, T. Nef, R. Riener, A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv. Robot. 21, 843–867 (2007)CrossRef M. Mihelj, T. Nef, R. Riener, A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv. Robot. 21, 843–867 (2007)CrossRef
103.
Zurück zum Zitat H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003)CrossRef H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003)CrossRef
104.
Zurück zum Zitat E.T. Wolbrecht, V. Chan, D.J. Reinkensmeyer, J.E. Bobrow, Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 286–297 (2008)CrossRef E.T. Wolbrecht, V. Chan, D.J. Reinkensmeyer, J.E. Bobrow, Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 286–297 (2008)CrossRef
105.
Zurück zum Zitat D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer, Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)CrossRef D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer, Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)CrossRef
106.
Zurück zum Zitat R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, V. Dietz, Patient-cooperative strategies for robot aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 380–394 (2005)CrossRef R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, V. Dietz, Patient-cooperative strategies for robot aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 380–394 (2005)CrossRef
107.
Zurück zum Zitat L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury, J. NeuroEng. Rehabil. 6 (2009) L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury, J. NeuroEng. Rehabil. 6 (2009)
Metadaten
Titel
Literature Review
verfasst von
Shane (S.Q.) Xie
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-19896-5_2

Neuer Inhalt