Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Lithium-Based Batteries

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter concerns, in an introductory manner, the heart of this monograph. Lithium-ion batteries are common in consumer electronic and are also growing in popularity for military, battery electric vehicle and aerospace applications, because of their characteristics of high energy density, small memory effect and only slow loss of charge when not in use. The Chapter starts with a brief history of the Lithium based electrochemical devices, followed by an explanation of the market needs. After that, the main characteristics of this typology of battery are emphasized and the working principle of the intercalation compounds explained. The chapter is closed with a deep overview of the materials used as anode, cathode, separator, electrolyte and binder for the Lithium-ion cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.A. Nazry, G. Pistoia, in Lithium Batteries: Science and Technology, ed. by G.-A. Nazry, G. Pistoia (Kluwer Academic Publishers, Boston, 2004) G.A. Nazry, G. Pistoia, in Lithium Batteries: Science and Technology, ed. by G.-A. Nazry, G. Pistoia (Kluwer Academic Publishers, Boston, 2004)
2.
Zurück zum Zitat J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef
3.
Zurück zum Zitat B. Scrosati, History of lithium batteries. J. Solid State Electrochem. 15, 1623–1630 (2011)CrossRef B. Scrosati, History of lithium batteries. J. Solid State Electrochem. 15, 1623–1630 (2011)CrossRef
4.
Zurück zum Zitat H. Ikeda, S. Narukawa, S. Nakaido, in Proceedings of the 29th Power Sources Conference, Electrochemical Society, Pennington, NJ, USA, 1980 H. Ikeda, S. Narukawa, S. Nakaido, in Proceedings of the 29th Power Sources Conference, Electrochemical Society, Pennington, NJ, USA, 1980
5.
Zurück zum Zitat M.S. Whittingham, Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog. Solid State Chem. 12, 41–49 (1978)CrossRef M.S. Whittingham, Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog. Solid State Chem. 12, 41–49 (1978)CrossRef
6.
Zurück zum Zitat E. Peled, D. Golodnitsky, G. Ardel, V. Eshkenazy, The SEI model—application to Li/PE batteries. Electrochim. Acta 40, 2197–2205 (1995)CrossRef E. Peled, D. Golodnitsky, G. Ardel, V. Eshkenazy, The SEI model—application to Li/PE batteries. Electrochim. Acta 40, 2197–2205 (1995)CrossRef
7.
Zurück zum Zitat M.B. Armand, J.M. Chabagno, M. Duclot, Extended Abstract of The Second International Meeting on Solid Electrolytes (St Andrews, Scotland, 1978) M.B. Armand, J.M. Chabagno, M. Duclot, Extended Abstract of The Second International Meeting on Solid Electrolytes (St Andrews, Scotland, 1978)
8.
Zurück zum Zitat M.B. Armand, J.M. Chabagno, M. Duclot, in Fast Ion Conduction in Solids, ed. by P. Vashista J.N. Mundy, G.K. Shenoy (Elsevier, New York, 1979) M.B. Armand, J.M. Chabagno, M. Duclot, in Fast Ion Conduction in Solids, ed. by P. Vashista J.N. Mundy, G.K. Shenoy (Elsevier, New York, 1979)
9.
Zurück zum Zitat D.W. Murphy, J.N. Carides, Low voltage behavior of lithium/metal dichalcogenide topochemical cells. J. Electrochem. Soc. 126, 349–351 (1979)CrossRef D.W. Murphy, J.N. Carides, Low voltage behavior of lithium/metal dichalcogenide topochemical cells. J. Electrochem. Soc. 126, 349–351 (1979)CrossRef
10.
Zurück zum Zitat M. Armand, in Materials for Advanced Batteries, ed. by D.W. Murphy, J. Broadhead, B.C.H. Steele (Plenum Press, New York, 1980) M. Armand, in Materials for Advanced Batteries, ed. by D.W. Murphy, J. Broadhead, B.C.H. Steele (Plenum Press, New York, 1980)
11.
Zurück zum Zitat M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127, 773–777 (1980)CrossRef M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127, 773–777 (1980)CrossRef
12.
13.
Zurück zum Zitat M. Lazzari, B. Scrosati, US Patent 4, 464 (1984) 447 M. Lazzari, B. Scrosati, US Patent 4, 464 (1984) 447
14.
Zurück zum Zitat J.J. Auborn, Y.L. Barberio, Lithium intercalation cells without metallic lithium. J. Electrochem. Soc. 134, 638–641 (1987)CrossRef J.J. Auborn, Y.L. Barberio, Lithium intercalation cells without metallic lithium. J. Electrochem. Soc. 134, 638–641 (1987)CrossRef
15.
Zurück zum Zitat T. Nagaura, K. Tazawa, Progress in Batteries and Solar Cells. 9, 20–25 (1990) JEC Press T. Nagaura, K. Tazawa, Progress in Batteries and Solar Cells. 9, 20–25 (1990) JEC Press
17.
Zurück zum Zitat K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCO2. Solid State Ionics 7, 314–321 (1981) K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCO2. Solid State Ionics 7, 314–321 (1981)
18.
Zurück zum Zitat K. Nakajima, Y. Nishi, in Energy Storage Systems for Electronics, vol 5, ed. by T. Osaka, M. Datta, (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 109–129 K. Nakajima, Y. Nishi, in Energy Storage Systems for Electronics, vol 5, ed. by T. Osaka, M. Datta, (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 109–129
19.
Zurück zum Zitat H. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Carbon 24, 241–246 (1986)CrossRef H. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Carbon 24, 241–246 (1986)CrossRef
20.
Zurück zum Zitat B. Scrosati, Lithium rocking chair batteries: an old concept? J. Electrochem. Soc. 139, 2776–2781 (1992)CrossRef B. Scrosati, Lithium rocking chair batteries: an old concept? J. Electrochem. Soc. 139, 2776–2781 (1992)CrossRef
21.
Zurück zum Zitat K. Brandt, R. Herr, D. Hoge, DECHEMA Monogr. 128, 279 (1993) K. Brandt, R. Herr, D. Hoge, DECHEMA Monogr. 128, 279 (1993)
22.
Zurück zum Zitat T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993)CrossRef T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993)CrossRef
23.
Zurück zum Zitat S. Megahed, B. Scrosati, Rechargeable Nonaqueous Batteries The Electrochemical Society. Interface 4, 34–37 (1995) S. Megahed, B. Scrosati, Rechargeable Nonaqueous Batteries The Electrochemical Society. Interface 4, 34–37 (1995)
24.
Zurück zum Zitat P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef
25.
Zurück zum Zitat P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Searching for new anode materials for the Li-Ion technology: time to deviate from the usual path. J. Power Sources 97, 235–239 (2001)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Searching for new anode materials for the Li-Ion technology: time to deviate from the usual path. J. Power Sources 97, 235–239 (2001)CrossRef
26.
Zurück zum Zitat P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRef P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRef
27.
Zurück zum Zitat H.B. Wu, J.S. Chen, H.H. Hang, X. Wen Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526–2542 (2012) H.B. Wu, J.S. Chen, H.H. Hang, X. Wen Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526–2542 (2012)
28.
Zurück zum Zitat T.L. Kulova, New electrode materials for lithium-ion batteries (review). Russ. J. Electrochem. 49, 1–25 (2013)CrossRef T.L. Kulova, New electrode materials for lithium-ion batteries (review). Russ. J. Electrochem. 49, 1–25 (2013)CrossRef
29.
Zurück zum Zitat J. Chen, Recent progress in advanced materials for lithium ion batteries. Materials 6, 156–183 (2013)CrossRef J. Chen, Recent progress in advanced materials for lithium ion batteries. Materials 6, 156–183 (2013)CrossRef
30.
Zurück zum Zitat C. Gerbaldi, Ph. D. Thesis Mesoporous materials and nanostructured LiFePO4 as cathodes for secondary Li-Ion batteries: synthesis and characterisation, Politecnico di Torino, 2006 C. Gerbaldi, Ph. D. Thesis Mesoporous materials and nanostructured LiFePO4 as cathodes for secondary Li-Ion batteries: synthesis and characterisation, Politecnico di Torino, 2006
31.
Zurück zum Zitat M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–731 (1998)CrossRef M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–731 (1998)CrossRef
32.
Zurück zum Zitat A. Hérold, Sur le systeme graphite. Bull. Soc. Chim. Fr. 187, 999–1004 (1955) A. Hérold, Sur le systeme graphite. Bull. Soc. Chim. Fr. 187, 999–1004 (1955)
33.
Zurück zum Zitat J.R. Dahn, U. von Sacken, M.W. Juzkow, H. Al-Janaby, Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138, 2207–2211 (1991)CrossRef J.R. Dahn, U. von Sacken, M.W. Juzkow, H. Al-Janaby, Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138, 2207–2211 (1991)CrossRef
34.
Zurück zum Zitat J.D. Bernal, The structure of graphite. Proc. R. Soc. 106, 749–773 (1924)CrossRef J.D. Bernal, The structure of graphite. Proc. R. Soc. 106, 749–773 (1924)CrossRef
35.
Zurück zum Zitat B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45, 2461–2466 (2000)CrossRef B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45, 2461–2466 (2000)CrossRef
36.
Zurück zum Zitat K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A mechanism of lithium storage in disordered carbons. Science 264, 556–558 (1994)CrossRef K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A mechanism of lithium storage in disordered carbons. Science 264, 556–558 (1994)CrossRef
37.
Zurück zum Zitat J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRef J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRef
38.
Zurück zum Zitat A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, Influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J. Electrochem. Soc. 142, 716–720 (1995)CrossRef A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, Influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J. Electrochem. Soc. 142, 716–720 (1995)CrossRef
39.
Zurück zum Zitat T. Zheng, J.S. Xue, J.R. Dahn, Lithium insertion in hydrogen-containing carbonaceous materials. Chem. Mat. 8, 389–393 (1996)CrossRef T. Zheng, J.S. Xue, J.R. Dahn, Lithium insertion in hydrogen-containing carbonaceous materials. Chem. Mat. 8, 389–393 (1996)CrossRef
40.
Zurück zum Zitat S. Nordlinder, Ph.D. Thesis nanotubes for battery applications, Uppsala University, Sweden 2, 2005 S. Nordlinder, Ph.D. Thesis nanotubes for battery applications, Uppsala University, Sweden 2, 2005
41.
Zurück zum Zitat G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi, P.M. He, W.Z. Li, Structure and lithium insertion properties of carbon nanotubes. J. Electrochem. Soc. 146, 1696–1701 (1999)CrossRef G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi, P.M. He, W.Z. Li, Structure and lithium insertion properties of carbon nanotubes. J. Electrochem. Soc. 146, 1696–1701 (1999)CrossRef
42.
Zurück zum Zitat A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, R.E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 147, 2845–2852 (2000)CrossRef A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, R.E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 147, 2845–2852 (2000)CrossRef
43.
Zurück zum Zitat Z.H. Yang, Y.H. Zhou, S.B. Sang, Y. Feng, H.Q. Wu, Lithium insertion into multi-walled raw carbon nanotubes pre-doped with lithium. Mater. Chem. Phys. 89, 295–299 (2005)CrossRef Z.H. Yang, Y.H. Zhou, S.B. Sang, Y. Feng, H.Q. Wu, Lithium insertion into multi-walled raw carbon nanotubes pre-doped with lithium. Mater. Chem. Phys. 89, 295–299 (2005)CrossRef
44.
Zurück zum Zitat E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRef E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRef
45.
Zurück zum Zitat J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRef J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRef
46.
Zurück zum Zitat F.Y. Su, Y.B. He, B. Li, X.C. Chen, C.H. You, W. Wei, W. Lu, Q.H. Yang, F. Kang, Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1, 429–439 (2012)CrossRef F.Y. Su, Y.B. He, B. Li, X.C. Chen, C.H. You, W. Wei, W. Lu, Q.H. Yang, F. Kang, Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1, 429–439 (2012)CrossRef
47.
Zurück zum Zitat S. Yang, P.Y. Zavalij, M.S. Whittingham, Anodes for lithium batteries: tin revisited. Electrochem. Commun. 5, 587–590 (2003)CrossRef S. Yang, P.Y. Zavalij, M.S. Whittingham, Anodes for lithium batteries: tin revisited. Electrochem. Commun. 5, 587–590 (2003)CrossRef
48.
Zurück zum Zitat I.S. Kim, G.E. Blomgren, P.N. Kumta, Sn/C composite anodes for Li-Ion batteries. Electrochem. Solid-State Lett. 7, A44–A48 (2004)CrossRef I.S. Kim, G.E. Blomgren, P.N. Kumta, Sn/C composite anodes for Li-Ion batteries. Electrochem. Solid-State Lett. 7, A44–A48 (2004)CrossRef
49.
Zurück zum Zitat J. Hassoun, S. Panero, P. Simon, P.L. Taberna, S. Scrosati, High-rate, long-life Ni–Sn nanostructured electrodes for lithium-ion batteries. Adv. Mater. 19, 1632–1635 (2007)CrossRef J. Hassoun, S. Panero, P. Simon, P.L. Taberna, S. Scrosati, High-rate, long-life Ni–Sn nanostructured electrodes for lithium-ion batteries. Adv. Mater. 19, 1632–1635 (2007)CrossRef
50.
Zurück zum Zitat B.A. Boukamp, G.C. Lesh, R.A. Huggins, All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981)CrossRef B.A. Boukamp, G.C. Lesh, R.A. Huggins, All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981)CrossRef
51.
Zurück zum Zitat U. Kasavajjula, C. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007)CrossRef U. Kasavajjula, C. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007)CrossRef
52.
Zurück zum Zitat W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)CrossRef W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)CrossRef
53.
Zurück zum Zitat J.H. Ryu, J.W. Kim, Y.E. Sung, S.M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306–A309 (2004)CrossRef J.H. Ryu, J.W. Kim, Y.E. Sung, S.M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306–A309 (2004)CrossRef
54.
Zurück zum Zitat J. Huang, Z. Jiang, The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim. Acta 53, 7756–7759 (2008)CrossRef J. Huang, Z. Jiang, The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim. Acta 53, 7756–7759 (2008)CrossRef
55.
Zurück zum Zitat Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009)CrossRef Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192, 588–598 (2009)CrossRef
56.
Zurück zum Zitat S. Casino, F. Di Lupo, C. Francia, A. Tuel, S. Bodoardo, C. Gerbaldi, Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-Ion battery anodes. J. Alloy. Compd. 594, 114–121 (2014)CrossRef S. Casino, F. Di Lupo, C. Francia, A. Tuel, S. Bodoardo, C. Gerbaldi, Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-Ion battery anodes. J. Alloy. Compd. 594, 114–121 (2014)CrossRef
57.
Zurück zum Zitat D.W. Murphy, R.J. Cava, S.M. Zahurak, A. Santoro, Ternary LixTiO2 phases from insertion reactions. Solid State Ionics 9, 413–417 (1983)CrossRef D.W. Murphy, R.J. Cava, S.M. Zahurak, A. Santoro, Ternary LixTiO2 phases from insertion reactions. Solid State Ionics 9, 413–417 (1983)CrossRef
58.
Zurück zum Zitat K.M. Colbow, J.R. Dahn, R.R. Haering, Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4. J. Power Sources 26, 397–402 (1989)CrossRef K.M. Colbow, J.R. Dahn, R.R. Haering, Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4. J. Power Sources 26, 397–402 (1989)CrossRef
59.
Zurück zum Zitat T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li [Li1/3Ti5/3] O 4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995)CrossRef T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li [Li1/3Ti5/3] O 4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995)CrossRef
60.
Zurück zum Zitat S. Scharner, W. Wepner, P. Schmid-Beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 146, 857–861 (1999)CrossRef S. Scharner, W. Wepner, P. Schmid-Beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 146, 857–861 (1999)CrossRef
61.
Zurück zum Zitat D. Wang, H.Y. Xu, M. Gu, C.H. Chen, Li2CuTi3O8–Li4Ti5O12 double spinel anode material with improved rate performance for Li-Ion batteries. Electrochem. Commun. 11, 50–53 (2009)CrossRef D. Wang, H.Y. Xu, M. Gu, C.H. Chen, Li2CuTi3O8–Li4Ti5O12 double spinel anode material with improved rate performance for Li-Ion batteries. Electrochem. Commun. 11, 50–53 (2009)CrossRef
62.
Zurück zum Zitat J. Kim, S.W. Kim, H. Gwon, W.S. Yoon, K. Kang, Comparative study of Li (Li1/3Ti5/3)O4 and Li (Ni1/2-xLi2x/3Tix/3) Ti3/2O4. Electrochim. Acta 54, 5914–5918 (2009)CrossRef J. Kim, S.W. Kim, H. Gwon, W.S. Yoon, K. Kang, Comparative study of Li (Li1/3Ti5/3)O4 and Li (Ni1/2-xLi2x/3Tix/3) Ti3/2O4. Electrochim. Acta 54, 5914–5918 (2009)CrossRef
63.
Zurück zum Zitat T.F. Yi, J. Shu, Y.R. Zhu, X.D. Zhu, C.B. Yue, A.N. Zhou, R.S. Zhu, High-performance Li4Ti5 − xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery. Electrochim. Acta 54, 7464–7470 (2009)CrossRef T.F. Yi, J. Shu, Y.R. Zhu, X.D. Zhu, C.B. Yue, A.N. Zhou, R.S. Zhu, High-performance Li4Ti5 − xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery. Electrochim. Acta 54, 7464–7470 (2009)CrossRef
64.
Zurück zum Zitat S. Huang, Z. Wen, J. Zhang, Z. Gu, X. Xum, Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery. Solid State Ionics 177, 851–855 (2006)CrossRef S. Huang, Z. Wen, J. Zhang, Z. Gu, X. Xum, Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery. Solid State Ionics 177, 851–855 (2006)CrossRef
65.
Zurück zum Zitat Z. Wen, X. Yang, S. Huang, Composite anode materials for. Li-Ion batteries. J. Power Sources 174, 1041–1045 (2007)CrossRef Z. Wen, X. Yang, S. Huang, Composite anode materials for. Li-Ion batteries. J. Power Sources 174, 1041–1045 (2007)CrossRef
66.
Zurück zum Zitat M.Q. Snyder, S.A. Trebukhova, B. Ravdel, M.C. Wheeler, J. DiCarlo, C.P. Tripp, W.J. DeSisto, Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources 165, 379–385 (2007)CrossRef M.Q. Snyder, S.A. Trebukhova, B. Ravdel, M.C. Wheeler, J. DiCarlo, C.P. Tripp, W.J. DeSisto, Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources 165, 379–385 (2007)CrossRef
67.
Zurück zum Zitat G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, T. Takamura, OCV hysteresis in Li-Ion batteries including two-phase transition materials. J. Power Sources 174, 1109–1112 (2007)CrossRef G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, T. Takamura, OCV hysteresis in Li-Ion batteries including two-phase transition materials. J. Power Sources 174, 1109–1112 (2007)CrossRef
68.
Zurück zum Zitat J. Shu, Li–Ti–O compounds and carbon-coated Li–Ti–O compounds as anode materials for lithium ion batteries. Electrochim. Acta 54, 2869–2876 (2009)CrossRef J. Shu, Li–Ti–O compounds and carbon-coated Li–Ti–O compounds as anode materials for lithium ion batteries. Electrochim. Acta 54, 2869–2876 (2009)CrossRef
69.
Zurück zum Zitat J. Kim, J. Cho, Spinel Li4Ti5012 nanowires for high-rate Li-Ion intercalation electrode, electrochemical and solid-state letters. Electrochem. Solid State Lett. 10, A81–A84 (2007)CrossRef J. Kim, J. Cho, Spinel Li4Ti5012 nanowires for high-rate Li-Ion intercalation electrode, electrochemical and solid-state letters. Electrochem. Solid State Lett. 10, A81–A84 (2007)CrossRef
70.
Zurück zum Zitat C. Jiang, Y. Zhou, I. Honma, T. Kudo, H. Zhou, Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. J. Power Sources 166, 514–518 (2007)CrossRef C. Jiang, Y. Zhou, I. Honma, T. Kudo, H. Zhou, Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. J. Power Sources 166, 514–518 (2007)CrossRef
71.
Zurück zum Zitat J. Huang, Z. Jiang, The synthesis of hollow spherical Li4Ti5O12 by macroemulsion method and its application in Li-Ion batteries. Electrochem. Solid State Lett. 11, A116–A118 (2008)CrossRef J. Huang, Z. Jiang, The synthesis of hollow spherical Li4Ti5O12 by macroemulsion method and its application in Li-Ion batteries. Electrochem. Solid State Lett. 11, A116–A118 (2008)CrossRef
72.
Zurück zum Zitat F.S. Ke, L. Huang, G.Z. Wei, L.J. Xue, J.T. Li, B. Zhang, S.R. Chen, X.Y. Fan, S.G. Sun, One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 54, 5825–5829 (2009)CrossRef F.S. Ke, L. Huang, G.Z. Wei, L.J. Xue, J.T. Li, B. Zhang, S.R. Chen, X.Y. Fan, S.G. Sun, One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 54, 5825–5829 (2009)CrossRef
73.
Zurück zum Zitat J.Y. Xiang, J.P. Tu, X.H. Huang, Y.Z. Yang, Morphology effect on the electrochemical performance of NiO films as anodes for lithium-ion batteries. J. Solid State Electrochem. 12, 941–945 (2008)CrossRef J.Y. Xiang, J.P. Tu, X.H. Huang, Y.Z. Yang, Morphology effect on the electrochemical performance of NiO films as anodes for lithium-ion batteries. J. Solid State Electrochem. 12, 941–945 (2008)CrossRef
74.
Zurück zum Zitat Q. Pan, H. Jin, H. Wang, G. Yin, Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical. Electrochim. Acta 53, 951–956 (2007)CrossRef Q. Pan, H. Jin, H. Wang, G. Yin, Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical. Electrochim. Acta 53, 951–956 (2007)CrossRef
75.
Zurück zum Zitat J.C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for Lithium-ion battery anode materials. Adv. Mater. 21, 803–807 (2009)CrossRef J.C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for Lithium-ion battery anode materials. Adv. Mater. 21, 803–807 (2009)CrossRef
76.
Zurück zum Zitat X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li Ion battery. J. Phys. Chem. B 108, 5547–5551 (2004)CrossRef X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li Ion battery. J. Phys. Chem. B 108, 5547–5551 (2004)CrossRef
77.
Zurück zum Zitat S.A. Needham, G.X. Wang, H.K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 159, 254–257 (2006)CrossRef S.A. Needham, G.X. Wang, H.K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 159, 254–257 (2006)CrossRef
78.
Zurück zum Zitat E.A. Souza, R. Landers, L.P. Cardoso, G.S. Cruz Tersio, M.H. Tabacniks, A. Gorenstein, Evaluation of copper oxide thin films as electrodes for microbatteries. J. Power Sources 155, 358–363 (2006) E.A. Souza, R. Landers, L.P. Cardoso, G.S. Cruz Tersio, M.H. Tabacniks, A. Gorenstein, Evaluation of copper oxide thin films as electrodes for microbatteries. J. Power Sources 155, 358–363 (2006)
79.
Zurück zum Zitat Q. Pan, M. Wang, Z. Wang, Facile fabrication of Cu2O/CuO nanocomposite films for Lithium-Ion batteries via chemical bath deposition batteries and energy storage. Electrochem. Solid State Lett. 12, A50–A53 (2009)CrossRef Q. Pan, M. Wang, Z. Wang, Facile fabrication of Cu2O/CuO nanocomposite films for Lithium-Ion batteries via chemical bath deposition batteries and energy storage. Electrochem. Solid State Lett. 12, A50–A53 (2009)CrossRef
80.
Zurück zum Zitat J.Y. Xiang, J.P. Tu, Y.F. Yuan, X.L. Wang, X.H. Huang, Z.Y. Zeng, Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochim. Acta 54, 1160–1165 (2009)CrossRef J.Y. Xiang, J.P. Tu, Y.F. Yuan, X.L. Wang, X.H. Huang, Z.Y. Zeng, Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochim. Acta 54, 1160–1165 (2009)CrossRef
81.
Zurück zum Zitat N. Garino, A. Lamberti, R. Gazia, A. Chiodoni, C. Gerbaldi, Document Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-Ion battery anodes. J. Alloy. Compd. 615, S454–S458 (2015)CrossRef N. Garino, A. Lamberti, R. Gazia, A. Chiodoni, C. Gerbaldi, Document Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-Ion battery anodes. J. Alloy. Compd. 615, S454–S458 (2015)CrossRef
82.
Zurück zum Zitat F. Di Lupo, C. Gerbaldi, S. Casino, C. Francia, G. Meligrana, A. Tuel, N. Penazzi, α-Fe2O3 lithium battery anodes by nanocasting strategy from ordered 2D and 3D templates. J. Alloy. Compd. 615, S482–S486 (2015)CrossRef F. Di Lupo, C. Gerbaldi, S. Casino, C. Francia, G. Meligrana, A. Tuel, N. Penazzi, α-Fe2O3 lithium battery anodes by nanocasting strategy from ordered 2D and 3D templates. J. Alloy. Compd. 615, S482–S486 (2015)CrossRef
83.
Zurück zum Zitat M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1226–1227 (1976)CrossRef M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1226–1227 (1976)CrossRef
84.
Zurück zum Zitat M.S. Whittingham, The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315–320 (1976)CrossRef M.S. Whittingham, The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315–320 (1976)CrossRef
85.
Zurück zum Zitat J.B. Goodenough, in Advances in Lithium Ion Batteries, vol 4, ed. by W.A. van Schalkwijk, B. Scrosati (Kluwer Academic/Plenum Publisher, New York, 2002), pp. 135–154 J.B. Goodenough, in Advances in Lithium Ion Batteries, vol 4, ed. by W.A. van Schalkwijk, B. Scrosati (Kluwer Academic/Plenum Publisher, New York, 2002), pp. 135–154
86.
Zurück zum Zitat S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries. J. Power Sources 51, 79–104 (1994)CrossRef S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries. J. Power Sources 51, 79–104 (1994)CrossRef
87.
Zurück zum Zitat M.M. Thackeray, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142, 2558–2563 (1995)CrossRef M.M. Thackeray, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142, 2558–2563 (1995)CrossRef
88.
Zurück zum Zitat R.V. Chebiam, F. Prado, A. Manthiram, Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1). Chem. Mater. 13, 2951–2957 (2001)CrossRef R.V. Chebiam, F. Prado, A. Manthiram, Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1). Chem. Mater. 13, 2951–2957 (2001)CrossRef
89.
Zurück zum Zitat C. Delmas, I. Saadoune, Electrochemical and physical properties of the LixNi1−yCoyO2. Solid State Ionics 53–56, 370–375 (1992)CrossRef C. Delmas, I. Saadoune, Electrochemical and physical properties of the LixNi1−yCoyO2. Solid State Ionics 53–56, 370–375 (1992)CrossRef
90.
Zurück zum Zitat D. Guyomard, in Energy Storage Systems for Electronics, vol 9, ed. by T. Osaka, M. Datta (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 253–350 D. Guyomard, in Energy Storage Systems for Electronics, vol 9, ed. by T. Osaka, M. Datta (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 253–350
91.
Zurück zum Zitat S. Albrecht, J. Kuimpers, M. Kruft, S. Malcus, C. Vogler, M. Wahl, M. Wohlfahrt-Mehrens, Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1 x(Ni1 y zCoyMz)O2 (M = Al, Mg). J. Power Sources 119–121, 178–183 (2003)CrossRef S. Albrecht, J. Kuimpers, M. Kruft, S. Malcus, C. Vogler, M. Wahl, M. Wohlfahrt-Mehrens, Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1 x(Ni1 y zCoyMz)O2 (M = Al, Mg). J. Power Sources 119–121, 178–183 (2003)CrossRef
92.
Zurück zum Zitat C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, K. Amine, Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 128, 278–285 (2004)CrossRef C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, K. Amine, Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 128, 278–285 (2004)CrossRef
93.
Zurück zum Zitat M. Holzapfel, R. Schreiner, A. Ott, Lithium-ion conductors of the system LiCo1 − xFexO2: a first electrochemical investigation. Electrochim. Acta 46, 1063–1070 (2001)CrossRef M. Holzapfel, R. Schreiner, A. Ott, Lithium-ion conductors of the system LiCo1 − xFexO2: a first electrochemical investigation. Electrochim. Acta 46, 1063–1070 (2001)CrossRef
94.
Zurück zum Zitat A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996)CrossRef A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996)CrossRef
95.
Zurück zum Zitat X.M. He, J.J. Li, Y. Cai, Y. Wang, J. Ying, C. Jiang, Preparation of spherical spinel LiMn2O4 cathode material for lithium ion batteries. J. Solid State 9, 438–444 (2005) X.M. He, J.J. Li, Y. Cai, Y. Wang, J. Ying, C. Jiang, Preparation of spherical spinel LiMn2O4 cathode material for lithium ion batteries. J. Solid State 9, 438–444 (2005)
96.
Zurück zum Zitat G.G. Wang, J.M. Wang, W.Q. Mao, H.B. Shao, Physical properties and electrochemical performance of LiMn2O4 cathode materials prepared by a precipitation method. J. Solid State 7, 524–530 (2005) G.G. Wang, J.M. Wang, W.Q. Mao, H.B. Shao, Physical properties and electrochemical performance of LiMn2O4 cathode materials prepared by a precipitation method. J. Solid State 7, 524–530 (2005)
97.
Zurück zum Zitat J.M. Amarilla, K. Petrov, F. Picó, G. Avdeev, J.M. Rojo, R.M. Rojas, Sucrose-aided combustion synthesis of nanosized LiMn1.99 − yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels: characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J. Power Sources 191, 591–600 (2009)CrossRef J.M. Amarilla, K. Petrov, F. Picó, G. Avdeev, J.M. Rojo, R.M. Rojas, Sucrose-aided combustion synthesis of nanosized LiMn1.99 − yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels: characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J. Power Sources 191, 591–600 (2009)CrossRef
98.
Zurück zum Zitat S.L. Zhao, H.Y. Chen, J.B. Wen, D.X. Li, Electrochemical properties of spinel LiCoxMn2−xO4 prepared by sol–gel process. J. Alloy. Compd 474, 473–476 (2009)CrossRef S.L. Zhao, H.Y. Chen, J.B. Wen, D.X. Li, Electrochemical properties of spinel LiCoxMn2−xO4 prepared by sol–gel process. J. Alloy. Compd 474, 473–476 (2009)CrossRef
99.
Zurück zum Zitat H. Huang, C. Wang, W.K. Zhang, Y.P. Gan, L. Kang, Electrochemical study on LiCo1/6Mn11/6O4 as cathode material for lithium ion batteries at elevated temperature. J. Power Sources 184, 583–588 (2008) H. Huang, C. Wang, W.K. Zhang, Y.P. Gan, L. Kang, Electrochemical study on LiCo1/6Mn11/6O4 as cathode material for lithium ion batteries at elevated temperature. J. Power Sources 184, 583–588 (2008)
100.
Zurück zum Zitat T. Ohzuku, S. Takeda, M. Iwanaga, Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J. Power Sources 81–82, 90–94 (1999)CrossRef T. Ohzuku, S. Takeda, M. Iwanaga, Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J. Power Sources 81–82, 90–94 (1999)CrossRef
101.
Zurück zum Zitat J. Choi, A. Manthiram, Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J. Electrochem. Soc. 152, A1714–A1718 (2005)CrossRef J. Choi, A. Manthiram, Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J. Electrochem. Soc. 152, A1714–A1718 (2005)CrossRef
102.
Zurück zum Zitat A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1441(997), 1188–1194 A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1441(997), 1188–1194
103.
Zurück zum Zitat G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-Ion cells. J. Power Sources 160, 516–522 (2006)CrossRef G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-Ion cells. J. Power Sources 160, 516–522 (2006)CrossRef
104.
Zurück zum Zitat M. Armand, J.B. Goodenough, A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, U.S. Patent 6, 514, 640, (2003) M. Armand, J.B. Goodenough, A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, U.S. Patent 6, 514, 640, (2003)
105.
Zurück zum Zitat M.M. Doeff, J. Chen, T.E. Conry, R. Wang, J. Wilcox, A. Aumentado, Combustion synthesis of nanoparticulate LiMgxMn1−xPO4 (x = 0, 0.1, 0.2) carbon composites. J. Mater. Res. 25, 1460–1468 (2010)CrossRef M.M. Doeff, J. Chen, T.E. Conry, R. Wang, J. Wilcox, A. Aumentado, Combustion synthesis of nanoparticulate LiMgxMn1−xPO4 (x = 0, 0.1, 0.2) carbon composites. J. Mater. Res. 25, 1460–1468 (2010)CrossRef
106.
Zurück zum Zitat Y.K. Sun, S.M. Oh, H.K. Park, B. Scrosati, Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv. Mater. 23, 5050–5054 (2011)CrossRef Y.K. Sun, S.M. Oh, H.K. Park, B. Scrosati, Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv. Mater. 23, 5050–5054 (2011)CrossRef
107.
Zurück zum Zitat J. Ni, H. Wang, L. Gao, L. Lu, A high-performance LiCoPO4/C core/shell composite for Li-Ion batteries. Electrochim. Acta 70, 349–354 (2012)CrossRef J. Ni, H. Wang, L. Gao, L. Lu, A high-performance LiCoPO4/C core/shell composite for Li-Ion batteries. Electrochim. Acta 70, 349–354 (2012)CrossRef
108.
Zurück zum Zitat R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, N. Schall, C. Stinner, Significantly improved cycling performance of LiCoPO4 cathodes. Electrochem. Commun. 13, 800–802 (2011)CrossRef R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, N. Schall, C. Stinner, Significantly improved cycling performance of LiCoPO4 cathodes. Electrochem. Commun. 13, 800–802 (2011)CrossRef
109.
Zurück zum Zitat G. Meligrana, F. Di Lupo, S. Ferrari, M. Destro, S. Bodoardo, N. Garino, C. Gerbaldi, Surfactant-assisted mild hydrothermal synthesis to nanostructured mixed orthophosphates LiMnyFe1-yPO4/C lithium insertion cathode materials. Electrochim. Acta 105, 99–109 (2013)CrossRef G. Meligrana, F. Di Lupo, S. Ferrari, M. Destro, S. Bodoardo, N. Garino, C. Gerbaldi, Surfactant-assisted mild hydrothermal synthesis to nanostructured mixed orthophosphates LiMnyFe1-yPO4/C lithium insertion cathode materials. Electrochim. Acta 105, 99–109 (2013)CrossRef
110.
Zurück zum Zitat R. Dominko, Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources 184, 462–468 (2008) R. Dominko, Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources 184, 462–468 (2008)
111.
Zurück zum Zitat I. Belharouak, A. Abouimrane, K. Amine, Structural and electrochemical characterization of Li2MnSiO4 cathode material. J. Phys. Chem. C 113, 20733–20737 (2009)CrossRef I. Belharouak, A. Abouimrane, K. Amine, Structural and electrochemical characterization of Li2MnSiO4 cathode material. J. Phys. Chem. C 113, 20733–20737 (2009)CrossRef
112.
Zurück zum Zitat Z.L. Gong, Y.X. Li, G.N. He, J. Li, Y. Yang, Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem. Solid State Lett. 11, A60–A63 (2008)CrossRef Z.L. Gong, Y.X. Li, G.N. He, J. Li, Y. Yang, Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem. Solid State Lett. 11, A60–A63 (2008)CrossRef
113.
Zurück zum Zitat M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem. Commun. 8, 1292–1298 (2006) M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem. Commun. 8, 1292–1298 (2006)
114.
Zurück zum Zitat B. Scrosati, in Lithium Ion Battery (Kodansha & Wiley-VCH editors, Wenheim, 1998), p. 218 B. Scrosati, in Lithium Ion Battery (Kodansha & Wiley-VCH editors, Wenheim, 1998), p. 218
115.
Zurück zum Zitat A.M. Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polymer J. 42, 21–42 (2006)CrossRef A.M. Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polymer J. 42, 21–42 (2006)CrossRef
116.
Zurück zum Zitat S. Hossain, in Handbook of Batteries, 2nd edn. (McGraw-Hill, NewYork, 1995) Chapter 36 S. Hossain, in Handbook of Batteries, 2nd edn. (McGraw-Hill, NewYork, 1995) Chapter 36
117.
Zurück zum Zitat J.M. Tarascon, D. Guyomard, New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-Ion. Solid State Ionics 69, 293–305 (1994)CrossRef J.M. Tarascon, D. Guyomard, New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-Ion. Solid State Ionics 69, 293–305 (1994)CrossRef
118.
Zurück zum Zitat J. Jianga, J.R. Dahn, Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem. Solid-State Lett. 6, A180–A182 (2003)CrossRef J. Jianga, J.R. Dahn, Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem. Solid-State Lett. 6, A180–A182 (2003)CrossRef
119.
Zurück zum Zitat D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)CrossRef D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)CrossRef
120.
Zurück zum Zitat M. Armand, The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994)CrossRef M. Armand, The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994)CrossRef
121.
Zurück zum Zitat T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)CrossRef T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)CrossRef
122.
Zurück zum Zitat M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005)CrossRef M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005)CrossRef
123.
Zurück zum Zitat M. Egashira, M. Nakagawa, I. Watanabe, S. Okada, T. Yamaki, Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 146, 685–689 (2005)CrossRef M. Egashira, M. Nakagawa, I. Watanabe, S. Okada, T. Yamaki, Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 146, 685–689 (2005)CrossRef
124.
Zurück zum Zitat S. Ahmad, M. Deepa, Ionogels encompassing ionic liquid with liquid like performance preferable for fast solid state electrochromic devices. Electrochem. Commun. 9, 1635–1638 (2007)CrossRef S. Ahmad, M. Deepa, Ionogels encompassing ionic liquid with liquid like performance preferable for fast solid state electrochromic devices. Electrochem. Commun. 9, 1635–1638 (2007)CrossRef
125.
Zurück zum Zitat V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221–238 (2007)CrossRef V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221–238 (2007)CrossRef
126.
Zurück zum Zitat H. Tao, Z. Feng, H. Liu, X. Kan, P. Chen, Reality and future of rechargeable lithium batteries. Open Mater. Sci. J. 5, 204–214 (2011)CrossRef H. Tao, Z. Feng, H. Liu, X. Kan, P. Chen, Reality and future of rechargeable lithium batteries. Open Mater. Sci. J. 5, 204–214 (2011)CrossRef
127.
Zurück zum Zitat S.-L. Chou, Y. Pan, J.-Z. Wang, H.-K. Liua, S.-X. Doua, Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 16, 20347–20359 (2014)CrossRef S.-L. Chou, Y. Pan, J.-Z. Wang, H.-K. Liua, S.-X. Doua, Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 16, 20347–20359 (2014)CrossRef
128.
Zurück zum Zitat L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, D. Beneventi, Cellulose-based Li-ion batteries: a review. Cellulose 20, 1523–1545 (2013)CrossRef L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, D. Beneventi, Cellulose-based Li-ion batteries: a review. Cellulose 20, 1523–1545 (2013)CrossRef
129.
Zurück zum Zitat L. Jabbour, Ph. D. Thesis “Elaboration of Li-Ion batteries using cellulose fibers and papermaking techniques”, LGP2, INP, Grenoble L. Jabbour, Ph. D. Thesis “Elaboration of Li-Ion batteries using cellulose fibers and papermaking techniques”, LGP2, INP, Grenoble
Metadaten
Titel
Lithium-Based Batteries
verfasst von
Lorenzo Zolin
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-39016-1_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.