Skip to main content
Erschienen in: Rare Metals 11/2018

12.09.2018

Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries

verfasst von: Wen Ma, Qing Xu

Erschienen in: Rare Metals | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Element sulfur is highly attractive due to their potentially low cost and environmental compatibility. However, polysulfides dissolution hinders the lithium–sulfur (Li–S) batteries toward commercialization. To overcome these issues, in this work, lithium cobaltate as a commercial material, for the first time, was devoted to engineering the electrode structure and composition to improve the performance. When incorporated with 80% sulfur powder, the synergetic effects of cobalt atoms and interlayer spaces effectively enable the production of Li–S batteries with a relatively high discharge capacity of 1420 mAh·g−1 at the low surface current density of 1 mA·cm−2 and stable capacity retention of 650 mAh·g−1 at high surface current density of 6 mA·cm−2. The introduction of lithium cobaltate is a viable approach for successfully developing practical Li–S batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Chen W, Lei TY, Wu CY, Deng M, Gong CH, Hu K, Ma YC, Dai LP, Lv WQ, He WD, Liu XJ, Xiong J, Yan CL. Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv Energy Mater. 2018;8(10):1702348.CrossRef Chen W, Lei TY, Wu CY, Deng M, Gong CH, Hu K, Ma YC, Dai LP, Lv WQ, He WD, Liu XJ, Xiong J, Yan CL. Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv Energy Mater. 2018;8(10):1702348.CrossRef
[3]
Zurück zum Zitat Huang JW, Su Y, Zhang YD, Wu WQ, Wu CY, Sun YH, Lu RF, Zou GF, Li YR, Xiong J. FeOx/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: insight into interface. J Mater Chem A. 2018;6(20):9467.CrossRef Huang JW, Su Y, Zhang YD, Wu WQ, Wu CY, Sun YH, Lu RF, Zou GF, Li YR, Xiong J. FeOx/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: insight into interface. J Mater Chem A. 2018;6(20):9467.CrossRef
[4]
Zurück zum Zitat Bhatt MD, O’Dwyer C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys. 2015;17(7):4799.CrossRef Bhatt MD, O’Dwyer C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys. 2015;17(7):4799.CrossRef
[5]
Zurück zum Zitat Li C, Wang ZB, Wang Q, Gu DM. Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 2017;36(5):365.CrossRef Li C, Wang ZB, Wang Q, Gu DM. Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 2017;36(5):365.CrossRef
[6]
Zurück zum Zitat Chen W, Qian T, Xiong J, Xu N, Liu XJ, Liu J, Zou JQ, Shen XW, Yang TZ, Chen Y, Yan CL. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv Mater. 2017;29(12):1605160.CrossRef Chen W, Qian T, Xiong J, Xu N, Liu XJ, Liu J, Zou JQ, Shen XW, Yang TZ, Chen Y, Yan CL. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv Mater. 2017;29(12):1605160.CrossRef
[7]
Zurück zum Zitat Li W, Sun X, Yu Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods. 2017;1(3):1600037.CrossRef Li W, Sun X, Yu Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods. 2017;1(3):1600037.CrossRef
[8]
Zurück zum Zitat Lei TY, Xia YM, Wang XF, Miao SY, Xiong J, Yan CL. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium–sulfur batteries. Small. 2017;13(37):1701013.CrossRef Lei TY, Xia YM, Wang XF, Miao SY, Xiong J, Yan CL. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium–sulfur batteries. Small. 2017;13(37):1701013.CrossRef
[9]
Zurück zum Zitat Jin Y, Li S, Kushima A, Zheng XQ, Sun YM, Xie J, Sun J, Xue WJ, Zhou GM, Wu J, Shi FF, Zhang RF, Zhu Z, So KP, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580.CrossRef Jin Y, Li S, Kushima A, Zheng XQ, Sun YM, Xie J, Sun J, Xue WJ, Zhou GM, Wu J, Shi FF, Zhang RF, Zhu Z, So KP, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580.CrossRef
[10]
Zurück zum Zitat Chen W, Lei TY, Qian T, Lv WQ, He WD, Wu CY, Liu XJ, Liu J, Chen B, Yan CL, Xiong J. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv Energy Mater. 2018;8(12):1702889.CrossRef Chen W, Lei TY, Qian T, Lv WQ, He WD, Wu CY, Liu XJ, Liu J, Chen B, Yan CL, Xiong J. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv Energy Mater. 2018;8(12):1702889.CrossRef
[11]
Zurück zum Zitat Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano. 2017;11(6):6031.CrossRef Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano. 2017;11(6):6031.CrossRef
[12]
Zurück zum Zitat Liu J, Qian T, Wang MF, Liu XJ, Xu N, You YZ, Yan CL. Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery. Nano Lett. 2017;17(8):5064.CrossRef Liu J, Qian T, Wang MF, Liu XJ, Xu N, You YZ, Yan CL. Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery. Nano Lett. 2017;17(8):5064.CrossRef
[13]
Zurück zum Zitat Zhang Q, Wang Y, Seh ZW, Fu Z, Zhang R, Cui Y. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015;15(6):3780.CrossRef Zhang Q, Wang Y, Seh ZW, Fu Z, Zhang R, Cui Y. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015;15(6):3780.CrossRef
[14]
Zurück zum Zitat Xu J, Ma J, Fan Q, Guo S, Dou S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv Mater. 2017;29(28):1606454.CrossRef Xu J, Ma J, Fan Q, Guo S, Dou S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv Mater. 2017;29(28):1606454.CrossRef
[15]
Zurück zum Zitat Urbonaite S, Poux T, Novák P. Progress towards commercially viable Li–S battery cells. Adv Energy Mater. 2015;5(16):1500118.CrossRef Urbonaite S, Poux T, Novák P. Progress towards commercially viable Li–S battery cells. Adv Energy Mater. 2015;5(16):1500118.CrossRef
[16]
Zurück zum Zitat Jiao Y, Chen W, Lei TY, Dai LP, Chen B, Wu CY, Xiong J. A novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium–sulfur batteries. Nanoscale Res Lett. 2017;12(1):195.CrossRef Jiao Y, Chen W, Lei TY, Dai LP, Chen B, Wu CY, Xiong J. A novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium–sulfur batteries. Nanoscale Res Lett. 2017;12(1):195.CrossRef
[17]
Zurück zum Zitat Lv DP, Zheng JM, Li QY, Li QY, Xie X, Ferrere S, Nie ZM, Mehdi LB, Browning ND, Zhang JG, Graff GL, Liu J, Xiao J. High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater. 2015;5(16):1402290.CrossRef Lv DP, Zheng JM, Li QY, Li QY, Xie X, Ferrere S, Nie ZM, Mehdi LB, Browning ND, Zhang JG, Graff GL, Liu J, Xiao J. High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater. 2015;5(16):1402290.CrossRef
[18]
Zurück zum Zitat Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.CrossRef Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.CrossRef
[19]
Zurück zum Zitat Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YR, Xiong J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater. 2017;7(4):1601843.CrossRef Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YR, Xiong J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater. 2017;7(4):1601843.CrossRef
[20]
Zurück zum Zitat Deng NP, Kang WM, Liu YB, Ju JG, Wu DY, Li L, Saman H, Cheng BW. A review on separators for lithium–sulfur battery: progress and prospects. J Power Sources. 2016;331(1):132.CrossRef Deng NP, Kang WM, Liu YB, Ju JG, Wu DY, Li L, Saman H, Cheng BW. A review on separators for lithium–sulfur battery: progress and prospects. J Power Sources. 2016;331(1):132.CrossRef
[21]
Zurück zum Zitat Guo YP, Li HQ, Zhai TY. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29(29):1700007.CrossRef Guo YP, Li HQ, Zhai TY. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29(29):1700007.CrossRef
[22]
Zurück zum Zitat Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium–sulfur batteries. Chem Soc Rev. 2016;45(20):5605.CrossRef Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium–sulfur batteries. Chem Soc Rev. 2016;45(20):5605.CrossRef
[23]
Zurück zum Zitat Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv Energy Mater. 2015;5(16):1500408.CrossRef Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv Energy Mater. 2015;5(16):1500408.CrossRef
[24]
Zurück zum Zitat Zhou GM, Wang DW, Li F, Hou PX, Yin LC, Liu C, Lu GQ, Gentle LR, Cheng HM. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ Sci. 2012;5(10):8901.CrossRef Zhou GM, Wang DW, Li F, Hou PX, Yin LC, Liu C, Lu GQ, Gentle LR, Cheng HM. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ Sci. 2012;5(10):8901.CrossRef
[25]
Zurück zum Zitat Hu Y, He D, Wang Y, Fu M, An X, Zhao X. Defect-introduced graphene sheets with hole structure as lithium-ion battery anode. Mater Lett. 2016;164:278.CrossRef Hu Y, He D, Wang Y, Fu M, An X, Zhao X. Defect-introduced graphene sheets with hole structure as lithium-ion battery anode. Mater Lett. 2016;164:278.CrossRef
[26]
Zurück zum Zitat Shen YD, Xiao ZC, Miao LX, Kong DB, Zheng XY, Chang YH, Zhi LJ. Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries. Rare Met. 2017;36(5):418.CrossRef Shen YD, Xiao ZC, Miao LX, Kong DB, Zheng XY, Chang YH, Zhi LJ. Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries. Rare Met. 2017;36(5):418.CrossRef
[27]
Zurück zum Zitat Zhou GM, Li L, Ma CQ, Wang SG, Shi Y, Koratkar N, Ren WC, Li F, Cheng HM. A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy. 2015;11:356.CrossRef Zhou GM, Li L, Ma CQ, Wang SG, Shi Y, Koratkar N, Ren WC, Li F, Cheng HM. A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy. 2015;11:356.CrossRef
[28]
Zurück zum Zitat Liu Y, Li G, Fu J, Chen Z, Peng X. Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium–sulfur batteries. Angew Chem. 2017;129(22):6272.CrossRef Liu Y, Li G, Fu J, Chen Z, Peng X. Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium–sulfur batteries. Angew Chem. 2017;129(22):6272.CrossRef
[29]
Zurück zum Zitat Hao GP, Tang C, Zhang E, Zhai PY, Yin J, Zhu WC, Zhang Q. Thermal exfoliation of layered metal–organic frameworks into ultrahydrophilic graphene stacks and their applications in Li–S batteries. Adv Mater. 2017;29(37):1702829.CrossRef Hao GP, Tang C, Zhang E, Zhai PY, Yin J, Zhu WC, Zhang Q. Thermal exfoliation of layered metal–organic frameworks into ultrahydrophilic graphene stacks and their applications in Li–S batteries. Adv Mater. 2017;29(37):1702829.CrossRef
[30]
Zurück zum Zitat Yan Y, Lei T, Jiao Y, Wu CY, Xiong J. TiO2 nanowire array as a polar absorber for high-performance lithium–sulfur batteries. Electrochim Acta. 2018;264:20.CrossRef Yan Y, Lei T, Jiao Y, Wu CY, Xiong J. TiO2 nanowire array as a polar absorber for high-performance lithium–sulfur batteries. Electrochim Acta. 2018;264:20.CrossRef
[31]
Zurück zum Zitat Huang JW, Sun YH, Zhang YD, Yan CY, Cong S, Lei TY, Dai X, Guo J, Lu RF, Zou GF, Xiong J, Li YR. A new member of electrocatalysts based on nickel phosphate nanocrystals for efficient water oxidation. Adv Mater. 2018;30(5):1705045.CrossRef Huang JW, Sun YH, Zhang YD, Yan CY, Cong S, Lei TY, Dai X, Guo J, Lu RF, Zou GF, Xiong J, Li YR. A new member of electrocatalysts based on nickel phosphate nanocrystals for efficient water oxidation. Adv Mater. 2018;30(5):1705045.CrossRef
[32]
Zurück zum Zitat He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. From metal-organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano. 2016;10(12):1098. He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. From metal-organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano. 2016;10(12):1098.
Metadaten
Titel
Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries
verfasst von
Wen Ma
Qing Xu
Publikationsdatum
12.09.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 11/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1129-4

Weitere Artikel der Ausgabe 11/2018

Rare Metals 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.