Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2016

01.08.2016 | Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres prepared by non-hydrolytic sol–gel

verfasst von: A. M. Escamilla-Pérez, N. Louvain, M. Kaschowitz, S. Freunberger, O. Fontaine, B. Boury, N. Brun, P. H. Mutin

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres were prepared by non-hydrolytic sol–gel from TiCl4, VOCl3, and iPr2O at 110 °C without any solvent or additives. The samples were characterized by elemental analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, nitrogen physisorption, and impedance measurements. At low vanadium loadings, only TiO2 anatase was detected, and V2O5 scherbinaite was also detected at high vanadium loadings. The texture of the samples depended on the V loading, but all the samples appeared built of primary nanoparticles (≈10–20 nm in size) that aggregate to form mesoporous micron-sized spheres. The lithium insertion properties of these materials were evaluated by galvanostatic measurements taken using coin-type cells, in view of their application as electrode for rechargeable Li-ion batteries. The mesoporous TiO2 microspheres showed good performances, with a specific reversible capacity of 145 and 128 mAh g−1 at C/2 and C, respectively (C = 335.6 mA g−1), good coulombic efficiency, and a moderate capacity fade (6 %) from the 2nd to the 20th cycle at C/20. Although the addition of V effectively increased the electronic conductivity of the powders, the specific reversible capacity and cycling performances of the TiO2–V2O5 samples were only minimally improved for a 5 at% V loading and were lower at higher V loading.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596CrossRef Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596CrossRef
2.
Zurück zum Zitat Mutin PH, Vioux A (2013) Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem A 1:11504–11512CrossRef Mutin PH, Vioux A (2013) Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem A 1:11504–11512CrossRef
3.
Zurück zum Zitat Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304CrossRef Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304CrossRef
4.
Zurück zum Zitat Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta 55:7717–7725CrossRef Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta 55:7717–7725CrossRef
5.
Zurück zum Zitat Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl Catal A 451:192–206CrossRef Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl Catal A 451:192–206CrossRef
6.
Zurück zum Zitat Bilecka I, Hintennach A, Rossell MD, Xie D, Novak P, Niederberger M (2011) Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. J Mater Chem 21:5881–5890CrossRef Bilecka I, Hintennach A, Rossell MD, Xie D, Novak P, Niederberger M (2011) Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. J Mater Chem 21:5881–5890CrossRef
7.
Zurück zum Zitat Yu S-H, Pucci A, Herntrich T, Willinger M-G, Baek S-H, Sung Y-E, Pinna N (2011) Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J Mater Chem 21:806–810CrossRef Yu S-H, Pucci A, Herntrich T, Willinger M-G, Baek S-H, Sung Y-E, Pinna N (2011) Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J Mater Chem 21:806–810CrossRef
8.
Zurück zum Zitat Song T, Paik U (2016) TiO2 as an active or supplemental material for lithium batteries. J Mater Chem A 4:14–31CrossRef Song T, Paik U (2016) TiO2 as an active or supplemental material for lithium batteries. J Mater Chem A 4:14–31CrossRef
9.
Zurück zum Zitat Sudant G, Baudrin E, Larcher D, Tarascon J-M (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269 Sudant G, Baudrin E, Larcher D, Tarascon J-M (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269
10.
Zurück zum Zitat Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater (Weinheim, Ger) 19:2087–2091CrossRef Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater (Weinheim, Ger) 19:2087–2091CrossRef
11.
Zurück zum Zitat Sondergaard M, Shen Y, Mamakhel A, Marinaro M, Wohlfahrt-Mehrens M, Wonsyld K, Dahl S, Iversen BB (2015) TiO2 nanoparticles for Li-ion battery anodes: mitigation of growth and irreversible capacity using LiOH and NaOH. Chem Mater 27:119–126CrossRef Sondergaard M, Shen Y, Mamakhel A, Marinaro M, Wohlfahrt-Mehrens M, Wonsyld K, Dahl S, Iversen BB (2015) TiO2 nanoparticles for Li-ion battery anodes: mitigation of growth and irreversible capacity using LiOH and NaOH. Chem Mater 27:119–126CrossRef
12.
Zurück zum Zitat Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRef Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRef
13.
Zurück zum Zitat Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
14.
Zurück zum Zitat Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 2006:2783–2785CrossRef Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 2006:2783–2785CrossRef
15.
Zurück zum Zitat Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837CrossRef Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837CrossRef
16.
Zurück zum Zitat Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A. doi:10.1039/C5TA09323F Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A. doi:10.​1039/​C5TA09323F
17.
Zurück zum Zitat Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X (2015) Titania nanomaterial as anode for lithium-ion rechargeable batteries. Energy Technol (Weinheim, Ger) 3:801–814 Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X (2015) Titania nanomaterial as anode for lithium-ion rechargeable batteries. Energy Technol (Weinheim, Ger) 3:801–814
18.
Zurück zum Zitat Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510CrossRef Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510CrossRef
19.
Zurück zum Zitat Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924CrossRef Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924CrossRef
20.
Zurück zum Zitat Anh LT, Rai AK, Thi TV, Gim J, Kim S, Shin E-C, Lee J-S, Kim J (2013) Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J Power Sources 243:891–898CrossRef Anh LT, Rai AK, Thi TV, Gim J, Kim S, Shin E-C, Lee J-S, Kim J (2013) Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J Power Sources 243:891–898CrossRef
21.
Zurück zum Zitat Fehse M, Cavaliere S, Lippens PE, Savych I, Iadecola A, Monconduit L, Jones DJ, Roziere J, Fischer F, Tessier C, Stievano L (2013) Nb-Doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117:13827–13835CrossRef Fehse M, Cavaliere S, Lippens PE, Savych I, Iadecola A, Monconduit L, Jones DJ, Roziere J, Fischer F, Tessier C, Stievano L (2013) Nb-Doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117:13827–13835CrossRef
22.
Zurück zum Zitat Popa AF, Mutin PH, Vioux A, Delahay G, Coq B (2004) Novel non-hydrolytic synthesis of a V2O5–TiO2 xerogel for the selective catalytic reduction of NOx by ammonia. Chem Commun: 2214–2215 Popa AF, Mutin PH, Vioux A, Delahay G, Coq B (2004) Novel non-hydrolytic synthesis of a V2O5–TiO2 xerogel for the selective catalytic reduction of NOx by ammonia. Chem Commun: 2214–2215
23.
Zurück zum Zitat Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5–TiO2 catalysts for VOC total oxidation. Appl Catal B 94:38–45CrossRef Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5–TiO2 catalysts for VOC total oxidation. Appl Catal B 94:38–45CrossRef
24.
Zurück zum Zitat Ohsaka T, Izum F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRef Ohsaka T, Izum F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRef
25.
Zurück zum Zitat Santangelo S, Messina G, Faggio G, Willinger MG, Pinna N, Donato A, Arena A, Donato N, Neri G (2010) Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond Relat Mater 19:590–594CrossRef Santangelo S, Messina G, Faggio G, Willinger MG, Pinna N, Donato A, Arena A, Donato N, Neri G (2010) Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond Relat Mater 19:590–594CrossRef
26.
Zurück zum Zitat Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Modern Phys 81:999–1014CrossRef Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Modern Phys 81:999–1014CrossRef
27.
Zurück zum Zitat Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472CrossRef Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472CrossRef
28.
Zurück zum Zitat Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327CrossRef Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327CrossRef
29.
Zurück zum Zitat Lafont U, Carta D, Mountjoy G, Chadwick AV, Kelder EM (2009) In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. J Phys Chem C 114:1372–1378CrossRef Lafont U, Carta D, Mountjoy G, Chadwick AV, Kelder EM (2009) In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. J Phys Chem C 114:1372–1378CrossRef
30.
Zurück zum Zitat Reddy MV, Sharma N, Adams S, Rao RP, Peterson VK, Chowdari BVR (2015) Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5:29535–29544CrossRef Reddy MV, Sharma N, Adams S, Rao RP, Peterson VK, Chowdari BVR (2015) Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5:29535–29544CrossRef
31.
Zurück zum Zitat Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium–ion batteries. J Phys Chem C 115:2529–2536CrossRef Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium–ion batteries. J Phys Chem C 115:2529–2536CrossRef
32.
Zurück zum Zitat Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRef Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRef
33.
Zurück zum Zitat Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRef Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRef
34.
Zurück zum Zitat Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRef Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRef
35.
Zurück zum Zitat Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride−graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526CrossRef Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride−graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526CrossRef
36.
Zurück zum Zitat Bao S-J, Bao Q-L, Li C-M, Zhi-Li D (2007) Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem Commun 9:1233–1238CrossRef Bao S-J, Bao Q-L, Li C-M, Zhi-Li D (2007) Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem Commun 9:1233–1238CrossRef
37.
Zurück zum Zitat Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047CrossRef Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047CrossRef
38.
Zurück zum Zitat Wu QL, Li J, Deshpande RD, Subramanian N, Rankin SE, Yang F, Cheng Y-T (2012) Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J Phys Chem C 116:18669–18677CrossRef Wu QL, Li J, Deshpande RD, Subramanian N, Rankin SE, Yang F, Cheng Y-T (2012) Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J Phys Chem C 116:18669–18677CrossRef
Metadaten
Titel
Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres prepared by non-hydrolytic sol–gel
verfasst von
A. M. Escamilla-Pérez
N. Louvain
M. Kaschowitz
S. Freunberger
O. Fontaine
B. Boury
N. Brun
P. H. Mutin
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4037-9

Weitere Artikel der Ausgabe 2/2016

Journal of Sol-Gel Science and Technology 2/2016 Zur Ausgabe

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Superhydrophobic adhesive surface on titanate nanotube brushes through surface modification by capric acid

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Preparation of Zn–Al layered double hydroxide thin films intercalated with Eosin Y by hot water treatment of sol-gel derived precursor films

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.