Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Original Article | Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014

Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm

Zeitschrift:
Neural Computing and Applications > Ausgabe 3-4/2014
Autoren:
Datong Liu, Yue Luo, Jie Liu, Yu Peng, Limeng Guo, Michael Pecht

Abstract

The lithium-ion battery cycle life prediction with particle filter (PF) depends on the physical or empirical model. However, in observation equation based on model, the adaptability and accuracy for individual battery under different operating conditions are not fully considered. Therefore, a novel fusion prognostic framework is proposed, in which the data-driven time series prediction model is adopted as observation equation, and combined to PF algorithm for lithium-ion battery cycle life prediction. Firstly, the nonlinear degradation feature of the lithium-ion battery capacity degradation is analyzed, and then, the nonlinear accelerated degradation factor is extracted to improve prediction ability of linear AR model. So an optimized nonlinear degradation autoregressive (ND–AR) time series model for remaining useful life (RUL) estimation of lithium-ion batteries is introduced. Then, the ND–AR model is used to realize multi-step prediction of the battery capacity degradation states. Finally, to improve the uncertainty representation ability of the standard PF algorithm, the regularized particle filter is applied to design a fusion RUL estimation framework of lithium-ion battery. Experimental results with the lithium-ion battery test data from NASA and CALCE (The Center for Advanced Life Cycle Engineering, the University of Maryland) show that the proposed fusion prognostic approach can effectively predict the battery RUL with more accurate forecasting result and uncertainty representation of probability density distribution (pdf).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014 Zur Ausgabe

Premium Partner

    Bildnachweise