Skip to main content
Erschienen in: Pattern Analysis and Applications 3/2014

01.08.2014 | Industrial and Commercial Application

Liver vasculature refinement with multiple 3D structuring element shapes

verfasst von: Do-Yeon Kim

Erschienen in: Pattern Analysis and Applications | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Delineating anatomical structures and other regions of interest is an important component of assisting and automating specific diagnostic, radiological, and surgical tasks. In this paper, a segmentation approach for liver region delineation is proposed, which is based on hysteresis thresholding followed by texture analysis with statistical moments. After that, the region growing method is applied to extract a hepatic vessel tree followed by hepatic vasculature refinement with multiple 3D structuring element shapes. The structure and morphology of the vascular network and its relationship with tumors and liver segments are of major interest to surgeons planning liver surgeries. Knowing the refined major vasculatures is important for surgeons to plan resection into liver segments for tumor treatment, and dissection into right and left lobes to assess accurate liver volume in determining donor suitability for liver transplantation. Therefore, an automated hepatic vessel segmentation scheme followed by vasculature refinement is recommended for planning tumor resections and living donor liver transplants. In addition, these vessel extraction and refinement methods combined with liver region segmentation techniques can also be applicable to extract tree-like organ structures such as carotid artery, renal artery, coronary artery, and airway paths from various medical imaging modalities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dhawan AP (2003) Medical image analysis. Wiley, New Jersey Dhawan AP (2003) Medical image analysis. Wiley, New Jersey
2.
Zurück zum Zitat Pham DL, Xu C, Prince JL (2000) Current method in medical image segmentation. Annu Rev Biomed Eng 2:315–337CrossRef Pham DL, Xu C, Prince JL (2000) Current method in medical image segmentation. Annu Rev Biomed Eng 2:315–337CrossRef
3.
Zurück zum Zitat Heneghan MA, O’Grady JG (1999) Liver transplantation for malignant disease. Best Pract Res Clin Gastroenterol 13(4):575–591CrossRef Heneghan MA, O’Grady JG (1999) Liver transplantation for malignant disease. Best Pract Res Clin Gastroenterol 13(4):575–591CrossRef
4.
Zurück zum Zitat Orloff M, Bozorgzadeh A, Lansing K, Cullen J, Ryan CK, Jain A et al (2004) Post-operative liver dysfunction following donation of segmental liver grafts. Am J Transpl 4(8):532 Orloff M, Bozorgzadeh A, Lansing K, Cullen J, Ryan CK, Jain A et al (2004) Post-operative liver dysfunction following donation of segmental liver grafts. Am J Transpl 4(8):532
5.
Zurück zum Zitat Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121CrossRef Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121CrossRef
6.
Zurück zum Zitat Niki N, Kawata Y, Sato H, Kumazaki T (1993) 3D imaging of blood vessels using X-ray rotational angiographic system. IEEE Med Imaging Conf 3:1873–1877 Niki N, Kawata Y, Sato H, Kumazaki T (1993) 3D imaging of blood vessels using X-ray rotational angiographic system. IEEE Med Imaging Conf 3:1873–1877
7.
Zurück zum Zitat Gullberg GT, Zeng GL (1992) A cone-beam filtered backpropagation reconstruction algorithm for cardiac single photon emission computed tomography. IEEE Trans Med Imaging 11:91–101CrossRef Gullberg GT, Zeng GL (1992) A cone-beam filtered backpropagation reconstruction algorithm for cardiac single photon emission computed tomography. IEEE Trans Med Imaging 11:91–101CrossRef
8.
Zurück zum Zitat Tozaki T, Kawata Y, Niki N, Ohmatzu H, Moriyama N (1995) 3D visualization of blood vessels and tumor using thin slice CT. IEEE Nucl Sci Symp Med Imaging Conf 3:1470–1474 Tozaki T, Kawata Y, Niki N, Ohmatzu H, Moriyama N (1995) 3D visualization of blood vessels and tumor using thin slice CT. IEEE Nucl Sci Symp Med Imaging Conf 3:1470–1474
9.
Zurück zum Zitat Kawata Y, Niki N, Kumazaki T (1995) An approach for detecting blood vessel diseases from cone-beam CT image. In: IEEE Image Processing Conference, pp 500–503 Kawata Y, Niki N, Kumazaki T (1995) An approach for detecting blood vessel diseases from cone-beam CT image. In: IEEE Image Processing Conference, pp 500–503
10.
Zurück zum Zitat Kawata Y, Niki N, Kumazaki T, Moonier PA (1995) Characteristics measurement for blood vessel diseases detection based on cone-beam CT images. IEEE Nucl Sci Symp Med Imaging Conf 3:1660–1664 Kawata Y, Niki N, Kumazaki T, Moonier PA (1995) Characteristics measurement for blood vessel diseases detection based on cone-beam CT images. IEEE Nucl Sci Symp Med Imaging Conf 3:1660–1664
11.
Zurück zum Zitat Sorantin E, Halmai C, Erdohelyi B, Palagyi K, Nyul L, Olle K (2002) Sprial CT-based assessment of tracheal stenosis using 3D skeletonization. IEEE Trans Med Imaging 21:263–273CrossRef Sorantin E, Halmai C, Erdohelyi B, Palagyi K, Nyul L, Olle K (2002) Sprial CT-based assessment of tracheal stenosis using 3D skeletonization. IEEE Trans Med Imaging 21:263–273CrossRef
12.
Zurück zum Zitat Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-Hill, New York Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-Hill, New York
13.
Zurück zum Zitat Schmitt H, Grass M, Rasche V, Schramm O, Haehnel S, Sartor K (2002) An X-ray based method for the determination of the contrast agent propagation in 3D vessel structures. IEEE Trans Med Imaging 21:251–262CrossRef Schmitt H, Grass M, Rasche V, Schramm O, Haehnel S, Sartor K (2002) An X-ray based method for the determination of the contrast agent propagation in 3D vessel structures. IEEE Trans Med Imaging 21:251–262CrossRef
14.
Zurück zum Zitat Obrien JF, Ezquerra NF (1994) Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial structural constraints. SPIE Proc Vis Biomed Comput 2359:25–38CrossRef Obrien JF, Ezquerra NF (1994) Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial structural constraints. SPIE Proc Vis Biomed Comput 2359:25–38CrossRef
15.
Zurück zum Zitat Higgins WE, Spyra WJT, Ritman EL, Kim Y, Spelman FA (1989) Automatic extraction of the arterial tree from 3D angiograms. IEEE Eng Med Biol Conf 2:563–564 Higgins WE, Spyra WJT, Ritman EL, Kim Y, Spelman FA (1989) Automatic extraction of the arterial tree from 3D angiograms. IEEE Eng Med Biol Conf 2:563–564
16.
Zurück zum Zitat Yim PJ, Choyke PL, Summers RM (2000) Grey-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans Med Imaging 19:568–576CrossRef Yim PJ, Choyke PL, Summers RM (2000) Grey-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans Med Imaging 19:568–576CrossRef
17.
Zurück zum Zitat Higgins WE, Spyra WJT, Karwoski RA, Ritman EL (1996) System for analyzing high resolution three-dimensional coronary angiograms. IEEE Trans Med Imaging 15:377–385CrossRef Higgins WE, Spyra WJT, Karwoski RA, Ritman EL (1996) System for analyzing high resolution three-dimensional coronary angiograms. IEEE Trans Med Imaging 15:377–385CrossRef
18.
Zurück zum Zitat Kim DY, Park JW (2009) Multiple-phase segmentation approach for blood vessel extraction on cervical MRA image sequence. Magn Reson Imaging 27(2):256–263CrossRef Kim DY, Park JW (2009) Multiple-phase segmentation approach for blood vessel extraction on cervical MRA image sequence. Magn Reson Imaging 27(2):256–263CrossRef
19.
Zurück zum Zitat Molina C, Prause G, Radeva P, Sonka M (1998) 3D catheter path reconstruction from biplane angiograms. SPIE Proc Med Imaging 3338:504–512CrossRef Molina C, Prause G, Radeva P, Sonka M (1998) 3D catheter path reconstruction from biplane angiograms. SPIE Proc Med Imaging 3338:504–512CrossRef
20.
Zurück zum Zitat Rueckert D, Burger P, Forbat SM, Mohiaddin RD, Yang GZ (1997) Automatic tracking of the aorta in cardiovascular MR images using deformable models. IEEE Trans Med Imaging 16:581–590CrossRef Rueckert D, Burger P, Forbat SM, Mohiaddin RD, Yang GZ (1997) Automatic tracking of the aorta in cardiovascular MR images using deformable models. IEEE Trans Med Imaging 16:581–590CrossRef
21.
Zurück zum Zitat Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesinger P (1999) Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging 10:41–51CrossRef Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesinger P (1999) Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging 10:41–51CrossRef
22.
Zurück zum Zitat Rueckert D, Burger P (1995) Contour fitting using stochastic and probabilistic relaxation for cine MR images. In: Computer Assisted Radiology, pp 137–142 Rueckert D, Burger P (1995) Contour fitting using stochastic and probabilistic relaxation for cine MR images. In: Computer Assisted Radiology, pp 137–142
23.
Zurück zum Zitat Geiger D, Gupta A, Costa LA, Vlontzos J (1995) Dynamic programming for detecting, tracking, and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17:294–302CrossRef Geiger D, Gupta A, Costa LA, Vlontzos J (1995) Dynamic programming for detecting, tracking, and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17:294–302CrossRef
24.
Zurück zum Zitat Klein A, Egglin TK, Pollak JS, Lee F, Amini A (1994) Identifying vascular features with orientation specific filters and b-spline snakes. In :IEEE Computers in Cardiology, pp 113–116 Klein A, Egglin TK, Pollak JS, Lee F, Amini A (1994) Identifying vascular features with orientation specific filters and b-spline snakes. In :IEEE Computers in Cardiology, pp 113–116
25.
Zurück zum Zitat Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Imaging Process 10(7):1010–1019CrossRefMATH Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Imaging Process 10(7):1010–1019CrossRefMATH
26.
Zurück zum Zitat Bouraoui B, Ronse C, Baruthio J, Passat N, Germain P (2008) Fully automatic 3D segmentation of coronary arteries based on mathematical morphology. IEEE Int Symp Biomed Imaging 5:1059–1062 Bouraoui B, Ronse C, Baruthio J, Passat N, Germain P (2008) Fully automatic 3D segmentation of coronary arteries based on mathematical morphology. IEEE Int Symp Biomed Imaging 5:1059–1062
27.
Zurück zum Zitat Tankyevych O, Talbot H, Dokladal P, Passat N (2009) Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging. IEEE Int Conf Image Process 16:2261–2264 Tankyevych O, Talbot H, Dokladal P, Passat N (2009) Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging. IEEE Int Conf Image Process 16:2261–2264
28.
Zurück zum Zitat Thackray BD, Nelson AC (1993) Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans Med Imaging 12:385–392CrossRef Thackray BD, Nelson AC (1993) Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans Med Imaging 12:385–392CrossRef
29.
Zurück zum Zitat Zhou Y, Zhang S, Tsekos N, Pavlidis I, Metaxas D (2012) Left endocardium tracking via collaborative trackers and shape prior. IEEE Int Symp Biomed Imaging 9:784–787 Zhou Y, Zhang S, Tsekos N, Pavlidis I, Metaxas D (2012) Left endocardium tracking via collaborative trackers and shape prior. IEEE Int Symp Biomed Imaging 9:784–787
30.
Zurück zum Zitat Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS (2012) Towards robust and effective shape modeling: sparse shape composition. Med Image Anal 16(1):265–277CrossRef Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS (2012) Towards robust and effective shape modeling: sparse shape composition. Med Image Anal 16(1):265–277CrossRef
31.
Zurück zum Zitat Kim DY, Park JW (2005) Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA images. Image Vis Comput 23(12):1277–1287CrossRef Kim DY, Park JW (2005) Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA images. Image Vis Comput 23(12):1277–1287CrossRef
32.
Zurück zum Zitat Petrou M, Bosdogianni P (1999) Image processing: the fundamentals. Wiley, New York Petrou M, Bosdogianni P (1999) Image processing: the fundamentals. Wiley, New York
33.
Zurück zum Zitat Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, New Jersey Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, New Jersey
34.
Zurück zum Zitat Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. Pacific Grove: PWS Publishing, CA Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. Pacific Grove: PWS Publishing, CA
35.
Zurück zum Zitat Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef
36.
Zurück zum Zitat Mehnert A, Jackway P (1997) An improved seeded region growing algorithm. Pattern Recogn Lett 18:1065–1071CrossRef Mehnert A, Jackway P (1997) An improved seeded region growing algorithm. Pattern Recogn Lett 18:1065–1071CrossRef
37.
Zurück zum Zitat Wang SY, Higgins WE (2003) Symmetric region growing. IEEE Trans Image Process 12:1007–1015CrossRef Wang SY, Higgins WE (2003) Symmetric region growing. IEEE Trans Image Process 12:1007–1015CrossRef
38.
Zurück zum Zitat Haralick RM, Stenberg SR, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell 9:532–550CrossRef Haralick RM, Stenberg SR, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell 9:532–550CrossRef
39.
Zurück zum Zitat Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graphics Appl 8:29–37CrossRef Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graphics Appl 8:29–37CrossRef
40.
Zurück zum Zitat Gao L, Heath DG, Kuszyk BS, Fishman EK (1996) Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology 201:359–364 Gao L, Heath DG, Kuszyk BS, Fishman EK (1996) Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology 201:359–364
41.
Zurück zum Zitat Gao L, Heath DG, Fishman EK (1998) Abdominal image segmentation using three-dimensional deformable models. Invest Radiol 33:348–355CrossRef Gao L, Heath DG, Fishman EK (1998) Abdominal image segmentation using three-dimensional deformable models. Invest Radiol 33:348–355CrossRef
42.
Zurück zum Zitat Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI (1998) An automatic diagnostic system for CT liver image classification. IEEE Trans Biomed Eng 45:783–794CrossRef Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI (1998) An automatic diagnostic system for CT liver image classification. IEEE Trans Biomed Eng 45:783–794CrossRef
43.
Zurück zum Zitat Farjo LA, Williams DM, Bland PH, Francis IR, Meyer CR (1992) Determination of liver volume from CT scans using histogram cluster analysis. J Comput Assist Tomogr 16:674–683CrossRef Farjo LA, Williams DM, Bland PH, Francis IR, Meyer CR (1992) Determination of liver volume from CT scans using histogram cluster analysis. J Comput Assist Tomogr 16:674–683CrossRef
44.
Zurück zum Zitat Bae KT, Giger ML, Chen CT, Kahn CE (1993) Automatic segmentation of liver structure in CT images. Med Phys 20:71–78CrossRef Bae KT, Giger ML, Chen CT, Kahn CE (1993) Automatic segmentation of liver structure in CT images. Med Phys 20:71–78CrossRef
45.
Zurück zum Zitat Kainmuller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of liver based on a heuristic intensity model. In: MICCAI workshop on 3D segmentation clinic, pp 109–116 Kainmuller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of liver based on a heuristic intensity model. In: MICCAI workshop on 3D segmentation clinic, pp 109–116
46.
Zurück zum Zitat Cootes TF, Hill A, Taylor CJ, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12(6):355–365CrossRef Cootes TF, Hill A, Taylor CJ, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12(6):355–365CrossRef
47.
Zurück zum Zitat Schmidt G, Athelogou MA, Schonmeyer R, Korn R, Binnig G (2007) Cognition network technology for a fully automated 3D segmentation of liver. In: MICCAI workshop on 3D segmentation clinic, pp 125–133 Schmidt G, Athelogou MA, Schonmeyer R, Korn R, Binnig G (2007) Cognition network technology for a fully automated 3D segmentation of liver. In: MICCAI workshop on 3D segmentation clinic, pp 125–133
48.
Zurück zum Zitat Susomboon R, Raicu DS, Burst J (2007) A hybrid approach for liver segmentation. In: MICCAI workshop on 3D segmentation clinic, pp 151–160 Susomboon R, Raicu DS, Burst J (2007) A hybrid approach for liver segmentation. In: MICCAI workshop on 3D segmentation clinic, pp 151–160
49.
Zurück zum Zitat Beichel R, Bauer C, Bornik A, Sorantin E, Bischof H (2007) Liver segmentation in CT data: a segmentation refinement approach. In: MICCAI workshop on 3D segmentation clinic, pp 235–245 Beichel R, Bauer C, Bornik A, Sorantin E, Bischof H (2007) Liver segmentation in CT data: a segmentation refinement approach. In: MICCAI workshop on 3D segmentation clinic, pp 235–245
50.
Zurück zum Zitat Boykov Y, Funka-Lea G (2006) Graph cuts and efficient n dimensional image segmentation. Int J Comput Vis 70(2):109–131CrossRef Boykov Y, Funka-Lea G (2006) Graph cuts and efficient n dimensional image segmentation. Int J Comput Vis 70(2):109–131CrossRef
51.
Zurück zum Zitat Dawant BM, Li R, Lennon B, Li S (2007) Semi-automatic segmentation of liver. In: MICCAI workshop on 3D segmentation clinic, pp 215–221 Dawant BM, Li R, Lennon B, Li S (2007) Semi-automatic segmentation of liver. In: MICCAI workshop on 3D segmentation clinic, pp 215–221
52.
Zurück zum Zitat Esneault S, Lafon C, Dillenseger JL (2010) Liver vessel segmentation using a hybrid geometrical moment/graph cuts method. IEEE Trans Biomed Eng 57(2):276–283CrossRef Esneault S, Lafon C, Dillenseger JL (2010) Liver vessel segmentation using a hybrid geometrical moment/graph cuts method. IEEE Trans Biomed Eng 57(2):276–283CrossRef
53.
Zurück zum Zitat Chi Y, Liu J, Venkatesh K, Huang S, Zhou J, Tian Q, Nowinski WL (2011) Segmentation of liver vasculature from contrast enhanced CT images using context-based voting. IEEE Trans Biomed Eng 58(8):2144–2153CrossRef Chi Y, Liu J, Venkatesh K, Huang S, Zhou J, Tian Q, Nowinski WL (2011) Segmentation of liver vasculature from contrast enhanced CT images using context-based voting. IEEE Trans Biomed Eng 58(8):2144–2153CrossRef
54.
Zurück zum Zitat Saitoh T, Tamura Y, Kaneko T (2002) Automatic segmentation of liver region through blood vessels on multi-phase CT. Int Conf Pattern Recogn 1:735–738CrossRef Saitoh T, Tamura Y, Kaneko T (2002) Automatic segmentation of liver region through blood vessels on multi-phase CT. Int Conf Pattern Recogn 1:735–738CrossRef
Metadaten
Titel
Liver vasculature refinement with multiple 3D structuring element shapes
verfasst von
Do-Yeon Kim
Publikationsdatum
01.08.2014
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 3/2014
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-013-0338-6

Weitere Artikel der Ausgabe 3/2014

Pattern Analysis and Applications 3/2014 Zur Ausgabe