Skip to main content

2023 | OriginalPaper | Buchkapitel

Load Prediction of Electric Vehicle Charging Station Based on Residual Network

verfasst von : Renjie Wang

Erschienen in: IEIS 2022

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the context of the rapid development of electric vehicles, the uneven space-time distribution of charging station load has caused the loss of efficiency and user experience. Therefore, the space-time prediction of charging station load has become an important research problem. In this paper, based on the St-ResNet model, which has achieved excellent results in space-time flow prediction in the field of traffic flow, we establish a space-time prediction model for a load of electric vehicle charging stations. In the model, we convert the spatial features of multiple charging stations with different geographical locations into 16*16 charging areas. And then, we fuse the three temporal features of the regional spatial distribution of the charging station load, and then use ResPlus to capture the long-distance spatial dependence of the charging load. Finally, we improved 3% to 20% compared with the baseline model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, L., Zhang, Y., Figueiredo, A.: Overview of research on charge and discharge load prediction of electric vehicles. Power Syst. Autom. 43(10), 177–191 (2019) Chen, L., Zhang, Y., Figueiredo, A.: Overview of research on charge and discharge load prediction of electric vehicles. Power Syst. Autom. 43(10), 177–191 (2019)
2.
Zurück zum Zitat Keskin, M., Laporte, G., Çatay, B.: Electric vehicle routing problem with time-dependent waiting times at recharging stations. Comput. Oper. Res. 107, 77–94 (2019)CrossRef Keskin, M., Laporte, G., Çatay, B.: Electric vehicle routing problem with time-dependent waiting times at recharging stations. Comput. Oper. Res. 107, 77–94 (2019)CrossRef
3.
Zurück zum Zitat Luo, Z., Hu, Z., Song, Y.: Study on plug-in electric vehicles charging load calculating. Autom. Electric Power Syst. 35(14), 36–42 (2011) Luo, Z., Hu, Z., Song, Y.: Study on plug-in electric vehicles charging load calculating. Autom. Electric Power Syst. 35(14), 36–42 (2011)
4.
Zurück zum Zitat Xu, G., Yang, G., Xu, Z.: Impacts of electric vehicle charging on distribution networks in Denmark. Autom. Electric Power Syst. 35(14), 18–23 (2011) Xu, G., Yang, G., Xu, Z.: Impacts of electric vehicle charging on distribution networks in Denmark. Autom. Electric Power Syst. 35(14), 18–23 (2011)
5.
Zurück zum Zitat Qian, K., Zhou, C., Allen, M.: Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans. Power Syst. 26(2), 802–810 (2011)CrossRef Qian, K., Zhou, C., Allen, M.: Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans. Power Syst. 26(2), 802–810 (2011)CrossRef
6.
Zurück zum Zitat Xing, Q., Chen, Z., Leng, Z.: Electric vehicle path planning and charging navigation strategy based on real-time traffic information. Chin. J. Electr. Eng. 40(2), 534–549 (2020) Xing, Q., Chen, Z., Leng, Z.: Electric vehicle path planning and charging navigation strategy based on real-time traffic information. Chin. J. Electr. Eng. 40(2), 534–549 (2020)
7.
Zurück zum Zitat Kong, X., Zheng, F., Zhijun, E.: Short-term load forecasting based on deep belief network. Autom. Electric Power Syst. 42(5), 133–139 (2018) Kong, X., Zheng, F., Zhijun, E.: Short-term load forecasting based on deep belief network. Autom. Electric Power Syst. 42(5), 133–139 (2018)
8.
Zurück zum Zitat Xu, X.B., Liu, W.X., Zhou, X.: Short-term load fore-casting for the electric bus station based on GRA-DE-SVR. In: 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGTASIA), Kuala Lumpur, Malaysia, pp. 388–393. IEEE (2014) Xu, X.B., Liu, W.X., Zhou, X.: Short-term load fore-casting for the electric bus station based on GRA-DE-SVR. In: 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGTASIA), Kuala Lumpur, Malaysia, pp. 388–393. IEEE (2014)
9.
Zurück zum Zitat Xiao, X., Pan, M., Duan, D.: Electric vehicle charging load prediction method based on grid division. J. Electric Power Sci. Technol. 36(3), 19–26 (2021) Xiao, X., Pan, M., Duan, D.: Electric vehicle charging load prediction method based on grid division. J. Electric Power Sci. Technol. 36(3), 19–26 (2021)
12.
Zurück zum Zitat Hocevar, M., Strok, B., Blagojevic, B.: Prediction of cavitation vortex dynamics in the draft tube of aFrancis turbine using radial basis neural networks. Neural Comput. Appl. 14(3), 229–234 (2005)CrossRef Hocevar, M., Strok, B., Blagojevic, B.: Prediction of cavitation vortex dynamics in the draft tube of aFrancis turbine using radial basis neural networks. Neural Comput. Appl. 14(3), 229–234 (2005)CrossRef
13.
Zurück zum Zitat Ge, S., Zhou, H., Liu, H.: Collaborative planning of Expressway charging station and service area considering the impact of vehicle accidents. J. Power Syst. Autom. 31(3), 1–8 (2019) Ge, S., Zhou, H., Liu, H.: Collaborative planning of Expressway charging station and service area considering the impact of vehicle accidents. J. Power Syst. Autom. 31(3), 1–8 (2019)
14.
Zurück zum Zitat Liu, Y., Zheng, H., Feng, X.: Short-term traffic flow prediction with Conv-LSTM. In: 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE (2017) Liu, Y., Zheng, H., Feng, X.: Short-term traffic flow prediction with Conv-LSTM. In: 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE (2017)
15.
Zurück zum Zitat Li, Y., Yu, R., Shahabi, C.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017) Li, Y., Yu, R., Shahabi, C.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:​1707.​01926 (2017)
16.
Zurück zum Zitat Sun, S., Wu, H., Xiang, L.: City-wide traffic flow forecasting using a deep convolutional neural network. Sensors 20(2), 421 (2020)CrossRef Sun, S., Wu, H., Xiang, L.: City-wide traffic flow forecasting using a deep convolutional neural network. Sensors 20(2), 421 (2020)CrossRef
17.
Zurück zum Zitat Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017) Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:​1709.​04875 (2017)
18.
Zurück zum Zitat Zhao, L., Song, Y., Zhang, C.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)CrossRef Zhao, L., Song, Y., Zhang, C.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)CrossRef
19.
Zurück zum Zitat Guo, S., Lin, Y., Feng, N.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 922–929 (2019) Guo, S., Lin, Y., Feng, N.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 922–929 (2019)
20.
Zurück zum Zitat Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017) Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
21.
Zurück zum Zitat Shi, X., Chen, Z., Wang, H.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015) Shi, X., Chen, Z., Wang, H.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
22.
Zurück zum Zitat Zonoozi, A., Kim, J., Li, X.L.: Periodic-CRN: a convolutional recurrent model for crowd density prediction with recurring periodic patterns. In: IJCAI, pp. 3732–3738 (2018) Zonoozi, A., Kim, J., Li, X.L.: Periodic-CRN: a convolutional recurrent model for crowd density prediction with recurring periodic patterns. In: IJCAI, pp. 3732–3738 (2018)
23.
Zurück zum Zitat Hansen, B.E.: Time series analysisjames d. hamilton princeton university press, 1994. Econometric Theory 11(3), 625–630 (1995) Hansen, B.E.: Time series analysisjames d. hamilton princeton university press, 1994. Econometric Theory 11(3), 625–630 (1995)
24.
Zurück zum Zitat Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015) Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)
Metadaten
Titel
Load Prediction of Electric Vehicle Charging Station Based on Residual Network
verfasst von
Renjie Wang
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3618-2_13

Premium Partner