2007 | OriginalPaper | Buchkapitel
Local-in-time existence of strong solutions of the n-dimensional Burgers equation via discretizations
verfasst von : João Paulo Teixeira
Erschienen in: The Strength of Nonstandard Analysis
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Consider the equation:
$$ u_t = \nu \Delta u - (u \cdot \nabla )u + f{\mathbf{ }}for{\mathbf{ }}x \in [0,1]^n {\mathbf{ }}and{\mathbf{ }}t \in (0,\infty ), $$
together with periodic boundary conditions and initial condition
u
(
t
, 0) =
g
(
x
). This corresponds a Navier-Stokes problem where the incompressibility condition has been dropped. The major difficulty in existence proofs for this simplified problem is the unbounded advection term, (
u
· ∇)
u
.
We present a proof of local-in-time existence of a smooth solution based on a discretization by a suitable Euler scheme. It will be shown that this solution exists in an interval [0,
T
), where
T
≤ 1/
C
, with
C
depending only on
n
and the values of the Lipschitz constants of
f
and
u
at time 0. The argument given is based directly on local estimates of the solutions of the discretized problem.