Skip to main content
Erschienen in: Engineering with Computers 3/2019

11.08.2018 | Original Article

Local meshless method for convection dominated steady and unsteady partial differential equations

verfasst von: Vikendra Singh, Siraj-ul-Islam, R. K. Mohanty

Erschienen in: Engineering with Computers | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a mildly shock-capturing stabilized local meshless method (SLMM) for convection-dominated steady and unsteady PDEs. This work is extension of the numerical procedure, which was designed only for steady state convection-dominated PDEs (Siraj-ul-Islam and Singh in Int J Comput Methods 14(6):1750067, 2017). The proposed meshless methodology is based on employing different type of stencils embodying the already known flow direction. Numerical experiments are performed to compare the proposed method with the finite-difference method on special grid (FDSG) and other numerical methods. Numerical results confirm that the new approach is accurate and efficient for solving a wide class of one- and two- dimensional convection-dominated PDEs having sharp corners and jump discontinuities. Performance of the SLMM is found better in some cases and comparable in other cases, than the mesh-based numerical methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siraj-ul-Islam, Singh V (2017) A local meshless method for steady state convection dominated flows. Int J Comput Methods 14(6):1750067MathSciNetCrossRefMATH Siraj-ul-Islam, Singh V (2017) A local meshless method for steady state convection dominated flows. Int J Comput Methods 14(6):1750067MathSciNetCrossRefMATH
2.
Zurück zum Zitat Benkhaldoun F, Halassi A, Ouazar D, Seaid M, Taik A (2017) A stabilized meshless method for time-dependent convection-dominated flow problems. Math Comput Simul 137:159–176MathSciNetCrossRefMATH Benkhaldoun F, Halassi A, Ouazar D, Seaid M, Taik A (2017) A stabilized meshless method for time-dependent convection-dominated flow problems. Math Comput Simul 137:159–176MathSciNetCrossRefMATH
3.
Zurück zum Zitat Qamar S, Noor S, Rehman M, Seidel-Morgenstern A (2010) Numerical solution of a multi-dimensional batch crystallization model with fines dissolution. Comput Chem Eng 36(3):1148–1160 Qamar S, Noor S, Rehman M, Seidel-Morgenstern A (2010) Numerical solution of a multi-dimensional batch crystallization model with fines dissolution. Comput Chem Eng 36(3):1148–1160
4.
Zurück zum Zitat Kaya A (2015) Finite difference approximations of multidimensional unsteady convection–diffusion–reaction equations. J Comput Phys 285:331–349MathSciNetCrossRefMATH Kaya A (2015) Finite difference approximations of multidimensional unsteady convection–diffusion–reaction equations. J Comput Phys 285:331–349MathSciNetCrossRefMATH
5.
Zurück zum Zitat Siraj-ul-Islam, Šarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers equations. Appl Math Model 36(3):1148–1160MathSciNetCrossRefMATH Siraj-ul-Islam, Šarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers equations. Appl Math Model 36(3):1148–1160MathSciNetCrossRefMATH
6.
Zurück zum Zitat Siraj-ul-Islam, Vertnik R, Šarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetCrossRefMATH Siraj-ul-Islam, Vertnik R, Šarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetCrossRefMATH
7.
Zurück zum Zitat Lu J, Fang J, Tan S, Shu C-W, Zhang M (2016) Inverse lax-wendroff procedure for numerical boundary conditions of convection–diffusion equations. J Comput Phys 317:276–300MathSciNetCrossRefMATH Lu J, Fang J, Tan S, Shu C-W, Zhang M (2016) Inverse lax-wendroff procedure for numerical boundary conditions of convection–diffusion equations. J Comput Phys 317:276–300MathSciNetCrossRefMATH
8.
Zurück zum Zitat Jeon Y (2015) Hybridized SUPG and Upwind numerical schemes for convection dominated diffusion problems. J Comput Appl Math 275:91–99MathSciNetCrossRefMATH Jeon Y (2015) Hybridized SUPG and Upwind numerical schemes for convection dominated diffusion problems. J Comput Appl Math 275:91–99MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cohen A, Dahmen W, Welper G (2012) Adaptivity and variational stabilization for convection–diffusion equations. Math Model Numer Anal 46(05):1247–1273MathSciNetCrossRefMATH Cohen A, Dahmen W, Welper G (2012) Adaptivity and variational stabilization for convection–diffusion equations. Math Model Numer Anal 46(05):1247–1273MathSciNetCrossRefMATH
11.
Zurück zum Zitat Demkowicz L, Heuer N (2013) Robust DPG method for convection–dominated diffusion problems. SIAM J Numer Anal 51(5):2514–2537MathSciNetCrossRefMATH Demkowicz L, Heuer N (2013) Robust DPG method for convection–dominated diffusion problems. SIAM J Numer Anal 51(5):2514–2537MathSciNetCrossRefMATH
12.
Zurück zum Zitat De Frutos J, García-Archilla B, Novo J (2011) An adaptive finite element method for evolutionary convection dominated problems. Comput Methods Appl Mech Eng 200(49):3601–3612MathSciNetCrossRefMATH De Frutos J, García-Archilla B, Novo J (2011) An adaptive finite element method for evolutionary convection dominated problems. Comput Methods Appl Mech Eng 200(49):3601–3612MathSciNetCrossRefMATH
13.
Zurück zum Zitat de Frutos J, García-Archilla B, John V, Novo J (2014) An adaptive SUPG method for evolutionary convection–diffusion equations. Comput Methods Appl Mech Eng 273:219–237MathSciNetCrossRefMATH de Frutos J, García-Archilla B, John V, Novo J (2014) An adaptive SUPG method for evolutionary convection–diffusion equations. Comput Methods Appl Mech Eng 273:219–237MathSciNetCrossRefMATH
14.
Zurück zum Zitat Codina R (1998) Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput Methods Appl Mech Eng 156(1):185–210MathSciNetCrossRefMATH Codina R (1998) Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput Methods Appl Mech Eng 156(1):185–210MathSciNetCrossRefMATH
15.
Zurück zum Zitat Jeon Y (2010) Analysis of the cell boundary element methods for convection dominated convection–diffusion equations. J Comput Appl Math 234(8):2469–2482MathSciNetCrossRefMATH Jeon Y (2010) Analysis of the cell boundary element methods for convection dominated convection–diffusion equations. J Comput Appl Math 234(8):2469–2482MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dehghan M, Mohammadi V (2017) A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method. Comput Phys Commun 217:23–34MathSciNetCrossRefMATH Dehghan M, Mohammadi V (2017) A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method. Comput Phys Commun 217:23–34MathSciNetCrossRefMATH
17.
Zurück zum Zitat Cueto E, Chinesta F (2013) Meshless methods for the simulation of material forming. Int J Mater Form 8(1):25–43CrossRef Cueto E, Chinesta F (2013) Meshless methods for the simulation of material forming. Int J Mater Form 8(1):25–43CrossRef
18.
Zurück zum Zitat Siraj-ul-Islam, Singh V, Kumar S (2017) Estimation of dispersion in an open channel from an elevated source using an upwind local meshless method. Int J Comput Methods 14(02):1750009MathSciNetCrossRefMATH Siraj-ul-Islam, Singh V, Kumar S (2017) Estimation of dispersion in an open channel from an elevated source using an upwind local meshless method. Int J Comput Methods 14(02):1750009MathSciNetCrossRefMATH
20.
Zurück zum Zitat Stevens D, Power H, Lees M, Morvan H (2009) The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J Comput Phys 228(12):4606–4624MathSciNetCrossRefMATH Stevens D, Power H, Lees M, Morvan H (2009) The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J Comput Phys 228(12):4606–4624MathSciNetCrossRefMATH
21.
Zurück zum Zitat Stevens D, Power H (2015) The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems. J Comput Phys 298:423–445MathSciNetCrossRefMATH Stevens D, Power H (2015) The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems. J Comput Phys 298:423–445MathSciNetCrossRefMATH
22.
Zurück zum Zitat Shen Q (2010) Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng Anal Bound Elem 34(3):213–228MathSciNetCrossRefMATH Shen Q (2010) Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng Anal Bound Elem 34(3):213–228MathSciNetCrossRefMATH
23.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510MathSciNetCrossRefMATH Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510MathSciNetCrossRefMATH
24.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2018) Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local radial basis functions-differential quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng Anal Bound Elem 92:156–170MathSciNetCrossRefMATH Dehghan M, Abbaszadeh M (2018) Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local radial basis functions-differential quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng Anal Bound Elem 92:156–170MathSciNetCrossRefMATH
25.
Zurück zum Zitat Ilati M, Dehghan M (2018) Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem. J Comput Appl Math 327:314–324MathSciNetCrossRefMATH Ilati M, Dehghan M (2018) Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem. J Comput Appl Math 327:314–324MathSciNetCrossRefMATH
26.
Zurück zum Zitat Ilati M, Dehghan M (2015) The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng Anal Bound Elem 52:99–109MathSciNetCrossRefMATH Ilati M, Dehghan M (2015) The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng Anal Bound Elem 52:99–109MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Siraj-ul-Islam, Ahmad M (2018) Meshless analysis of elliptic interface boundary value problems. Eng Anal Bound Elem 92:38–49MathSciNetCrossRefMATH Siraj-ul-Islam, Ahmad M (2018) Meshless analysis of elliptic interface boundary value problems. Eng Anal Bound Elem 92:38–49MathSciNetCrossRefMATH
29.
Zurück zum Zitat Siraj-ul-Islam, Ahmad I, Khaliq AQ (2017) Local RBF method for multi-dimensional partial differential equations. Comput Math Appl 74(2):292–324MathSciNetCrossRefMATH Siraj-ul-Islam, Ahmad I, Khaliq AQ (2017) Local RBF method for multi-dimensional partial differential equations. Comput Math Appl 74(2):292–324MathSciNetCrossRefMATH
30.
Zurück zum Zitat Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J Comput Phys 83(1):32–78MathSciNetCrossRefMATH Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J Comput Phys 83(1):32–78MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ngo A, Bastian P, Ippisch O (2015) Numerical solution of steady-state groundwater flow and solute transport problems: discontinuous Galerkin based methods compared to the streamline diffusion approach. Comput Methods Appl Mech Eng 294:331–358MathSciNetCrossRefMATH Ngo A, Bastian P, Ippisch O (2015) Numerical solution of steady-state groundwater flow and solute transport problems: discontinuous Galerkin based methods compared to the streamline diffusion approach. Comput Methods Appl Mech Eng 294:331–358MathSciNetCrossRefMATH
32.
Zurück zum Zitat Ali M (2012) Optimal operation of industrial batch crystallizers a nonlinear model-based control approach. Thesis 36(3):1148–1160 Ali M (2012) Optimal operation of industrial batch crystallizers a nonlinear model-based control approach. Thesis 36(3):1148–1160
33.
Zurück zum Zitat Siraj-ul-Islam, Šarler B, Aziz I, Haq F (2011) Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int J Therm Sci 50:686–697CrossRef Siraj-ul-Islam, Šarler B, Aziz I, Haq F (2011) Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int J Therm Sci 50:686–697CrossRef
34.
Zurück zum Zitat Siraj-ul-Islam, Aziz I, Al-Fhaid A, Shah A (2013) A numerical assessment of parabolic partial differential equations using haar and legendre wavelets. Appl Math Model 37(23):9455–9481MathSciNetCrossRefMATH Siraj-ul-Islam, Aziz I, Al-Fhaid A, Shah A (2013) A numerical assessment of parabolic partial differential equations using haar and legendre wavelets. Appl Math Model 37(23):9455–9481MathSciNetCrossRefMATH
Metadaten
Titel
Local meshless method for convection dominated steady and unsteady partial differential equations
verfasst von
Vikendra Singh
Siraj-ul-Islam
R. K. Mohanty
Publikationsdatum
11.08.2018
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2019
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-018-0632-4

Weitere Artikel der Ausgabe 3/2019

Engineering with Computers 3/2019 Zur Ausgabe

Neuer Inhalt