Skip to main content

2025 | OriginalPaper | Buchkapitel

Local Optimal Issue in Bees Algorithm: Markov Chain Analysis and Integration with Dynamic Particle Swarm Optimisation Algorithm

verfasst von : JianBang Liu, Mei Choo Ang, Kok Weng Ng, Jun Kit Chaw

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inspired by the foraging behaviour of bees in nature, the bees algorithm (BA) is a biomimetic optimisation method designed according to how bees work together in choosing food sources and collecting high-quality honey. However, there are only a few mathematical studies on the convergence and optimisation problem of BA in the literature, and most of the BA implementations are dependent on trial-and-error. Thus, this study attempts to use Markov chain theory to enhance the understanding and analysis of BA convergence from the perspectives of the neighbourhood contraction strategy and site abandonment strategy. To improve the optimisation performance of the BA, this study established a combination model of the BA and a dynamic particle swarm optimisation algorithm on the local search process of the BA and the effect of the task allocation of scout bees for target location. Finally, the simulation experiment was conducted in MATLAB using the combination model. The simulation result shows that the probability of the combination model falling into the local optimum is much lower than that of the conventional BA based on the good convergence performance for the optimisation problem. It can enrich the theoretical base of the BA as a resource for convergence performance and further optimisation analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Seeley TD (1996) The wisdom of the hive: the social physiology of honey bee colony. Harvard University Press Seeley TD (1996) The wisdom of the hive: the social physiology of honey bee colony. Harvard University Press
2.
Zurück zum Zitat Passino KM, Seeley TD, Visscher PK (2008) Swarm cognition in honey bees. Behav Ecol Sociobiol 62(3):401–414CrossRef Passino KM, Seeley TD, Visscher PK (2008) Swarm cognition in honey bees. Behav Ecol Sociobiol 62(3):401–414CrossRef
3.
Zurück zum Zitat Sato T, Hagiwara M (1998) Bee system: finding solution by a concentrated search. IEEJ Trans Electron Inf Syst 118(5):721–726 Sato T, Hagiwara M (1998) Bee system: finding solution by a concentrated search. IEEJ Trans Electron Inf Syst 118(5):721–726
4.
Zurück zum Zitat Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University
5.
Zurück zum Zitat Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, pp 44–48 Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, pp 44–48
6.
Zurück zum Zitat Tolabi HB, Ali MH, Ayob SBM, Rizwan (2014) Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation. Energy 71:507–515 Tolabi HB, Ali MH, Ayob SBM, Rizwan (2014) Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation. Energy 71:507–515
7.
Zurück zum Zitat Akpinar Ş, Baykasoğlu A (2014) Modeling and solving mixed-model assembly line balancing problem with setups. Part II: a multiple colony hybrid bees algorithm. J Manuf Syst 33(4):445–461CrossRef Akpinar Ş, Baykasoğlu A (2014) Modeling and solving mixed-model assembly line balancing problem with setups. Part II: a multiple colony hybrid bees algorithm. J Manuf Syst 33(4):445–461CrossRef
8.
Zurück zum Zitat Sarailoo M, Rahmani Z, Rezaie B (2015) A novel model predictive control scheme based on bees algorithm in a class of nonlinear systems: application to a three tank system. Neurocomputing 152:294–304CrossRef Sarailoo M, Rahmani Z, Rezaie B (2015) A novel model predictive control scheme based on bees algorithm in a class of nonlinear systems: application to a three tank system. Neurocomputing 152:294–304CrossRef
9.
Zurück zum Zitat Zarei K, Atabati M, Kor K (2014) Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena Pyriformis. Bull Environ Contam Toxicol 92(6):642–649CrossRef Zarei K, Atabati M, Kor K (2014) Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena Pyriformis. Bull Environ Contam Toxicol 92(6):642–649CrossRef
10.
Zurück zum Zitat Deghbouch H, Debbat F (2021) A hybrid bees algorithm with grasshopper optimization algorithm for optimal deployment of wireless sensor networks. Intel Artif 24(67):18–35CrossRef Deghbouch H, Debbat F (2021) A hybrid bees algorithm with grasshopper optimization algorithm for optimal deployment of wireless sensor networks. Intel Artif 24(67):18–35CrossRef
11.
12.
Zurück zum Zitat Sun X, Yang L, Gao L, Zhang B, Li S, Li J (2015) Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields. J Appl Remote Sens 9(1):095047 Sun X, Yang L, Gao L, Zhang B, Li S, Li J (2015) Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields. J Appl Remote Sens 9(1):095047
13.
Zurück zum Zitat Sagayam KM, Hemanth DJ (2018) ABC algorithm based optimization of 1-D hidden Markov model for hand gesture recognition applications. Comput Ind 99:313–323CrossRef Sagayam KM, Hemanth DJ (2018) ABC algorithm based optimization of 1-D hidden Markov model for hand gesture recognition applications. Comput Ind 99:313–323CrossRef
14.
Zurück zum Zitat Kıran MS, Gündüz M (2013) A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl Soft Comput 13(4):2188–2203CrossRef Kıran MS, Gündüz M (2013) A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl Soft Comput 13(4):2188–2203CrossRef
15.
Zurück zum Zitat Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:931256MathSciNet Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015:931256MathSciNet
16.
Zurück zum Zitat Alaidi AH, Der CS, Leong YW (2021) Systematic review of enhancement of artificial bee colony algorithm using ant colony pheromone. Int J Interact Mob Technol 15(16):173 Alaidi AH, Der CS, Leong YW (2021) Systematic review of enhancement of artificial bee colony algorithm using ant colony pheromone. Int J Interact Mob Technol 15(16):173
17.
Zurück zum Zitat Ang MC, Ng KW, Pham DT (2013) Combining the Bees Algorithm and shape grammar to generate branded product concepts. Proc Inst Mech Eng, Part B: J Eng Manuf 227(12):1860–1873CrossRef Ang MC, Ng KW, Pham DT (2013) Combining the Bees Algorithm and shape grammar to generate branded product concepts. Proc Inst Mech Eng, Part B: J Eng Manuf 227(12):1860–1873CrossRef
18.
Zurück zum Zitat Pham DT, Ang M, Ng K, Otri S, Darwish AH (2008) Generating branded product concepts: comparing the bees algorithm and an evolutionary algorithm, pp 398–403 Pham DT, Ang M, Ng K, Otri S, Darwish AH (2008) Generating branded product concepts: comparing the bees algorithm and an evolutionary algorithm, pp 398–403
19.
Zurück zum Zitat Pham DT, Otri S, Darwish AH (2007) Application of the Bees algorithm to PCB assembly optimisation, pp 511–516 Pham DT, Otri S, Darwish AH (2007) Application of the Bees algorithm to PCB assembly optimisation, pp 511–516
20.
Zurück zum Zitat Pham D, Castellani M, Fahmy A (2008) Learning the inverse kinematics of a robot manipulator using the bees algorithm. IEEE, pp 493–498 Pham D, Castellani M, Fahmy A (2008) Learning the inverse kinematics of a robot manipulator using the bees algorithm. IEEE, pp 493–498
21.
Zurück zum Zitat Pham DT, Castellani M (2009) The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2919–2938CrossRef Pham DT, Castellani M (2009) The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng C J Mech Eng Sci 223(12):2919–2938CrossRef
22.
Zurück zum Zitat Darwish AH (2009) Enhanced Bees algorithm with fuzzy logic and Kalman filtering. Cardiff University, UK Darwish AH (2009) Enhanced Bees algorithm with fuzzy logic and Kalman filtering. Cardiff University, UK
23.
Zurück zum Zitat Packianather M, Landy M, Pham D (2009) Enhancing the speed of the Bees algorithm using pheromone-based recruitment. IEEE, pp 789–794 Packianather M, Landy M, Pham D (2009) Enhancing the speed of the Bees algorithm using pheromone-based recruitment. IEEE, pp 789–794
24.
Zurück zum Zitat Pham QT, Pham DT, Castellani M (2012) A modified bees algorithm and a statistics-based method for tuning its parameters. Proc Inst Mech Eng, Part I: J Syst Control Eng 226(3):287–301 Pham QT, Pham DT, Castellani M (2012) A modified bees algorithm and a statistics-based method for tuning its parameters. Proc Inst Mech Eng, Part I: J Syst Control Eng 226(3):287–301
25.
Zurück zum Zitat Ebubekir K (2010) The bees algorithm theory, improvements and applications. In: Manufacturing Engineering Centre School of Engineering University of Wales. Cardiff United Kingdom Ebubekir K (2010) The bees algorithm theory, improvements and applications. In: Manufacturing Engineering Centre School of Engineering University of Wales. Cardiff United Kingdom
26.
Zurück zum Zitat Pham D, Ghanbarzadeh A, Otri S, Koç E (2009) Optimal design of mechanical components using the bees algorithm. Proc Inst Mech Eng C J Mech Eng Sci 223(5):1051–1056CrossRef Pham D, Ghanbarzadeh A, Otri S, Koç E (2009) Optimal design of mechanical components using the bees algorithm. Proc Inst Mech Eng C J Mech Eng Sci 223(5):1051–1056CrossRef
27.
Zurück zum Zitat Ang MC, Ng KW, Pham DT, Soroka A (2013) Simulations of PCB assembly optimisation based on the Bees algorithm with TRIZ-inspired operators. Springer, pp 335–346 Ang MC, Ng KW, Pham DT, Soroka A (2013) Simulations of PCB assembly optimisation based on the Bees algorithm with TRIZ-inspired operators. Springer, pp 335–346
28.
Zurück zum Zitat Pham DT, Haj Darwish A, Eldukhri EE (2009) Optimisation of a fuzzy logic controller using the bees algorithm. Int J Comput Aided Eng Technol 1(2):250–264CrossRef Pham DT, Haj Darwish A, Eldukhri EE (2009) Optimisation of a fuzzy logic controller using the bees algorithm. Int J Comput Aided Eng Technol 1(2):250–264CrossRef
29.
Zurück zum Zitat Packianather MS, Yuce B, Mastrocinque E, Fruggiero F, Pham DT, Lambiase A (2014) Novel genetic bees algorithm applied to single machine scheduling problem. IEEE, pp 906–911 Packianather MS, Yuce B, Mastrocinque E, Fruggiero F, Pham DT, Lambiase A (2014) Novel genetic bees algorithm applied to single machine scheduling problem. IEEE, pp 906–911
30.
Zurück zum Zitat Pham D, Soroka AJ, Ghanbarzadeh A, Koc E, Otri S, Packianather M (2006) Optimising neural networks for identification of wood defects using the bees algorithm. IEEE, pp 1346–1351 Pham D, Soroka AJ, Ghanbarzadeh A, Koc E, Otri S, Packianather M (2006) Optimising neural networks for identification of wood defects using the bees algorithm. IEEE, pp 1346–1351
31.
Zurück zum Zitat Jevtic A, Gutiérrez A, Andina D, Jamshidi M (2011) Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst J 6(2):296–304CrossRef Jevtic A, Gutiérrez A, Andina D, Jamshidi M (2011) Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst J 6(2):296–304CrossRef
32.
Zurück zum Zitat Pham D, Pham Q, Ghanbarzadeh A, Castellani M (2008) Dynamic optimisation of chemical engineering processes using the bees algorithm. IFAC Proc Vol 41(2):6100–6105CrossRef Pham D, Pham Q, Ghanbarzadeh A, Castellani M (2008) Dynamic optimisation of chemical engineering processes using the bees algorithm. IFAC Proc Vol 41(2):6100–6105CrossRef
33.
Zurück zum Zitat Abdullah S, Alzaqebah M (2013) A hybrid self-adaptive bees algorithm for examination timetabling problems. Appl Soft Comput 13(8):3608–3620CrossRef Abdullah S, Alzaqebah M (2013) A hybrid self-adaptive bees algorithm for examination timetabling problems. Appl Soft Comput 13(8):3608–3620CrossRef
34.
Zurück zum Zitat Pham DT, Al-Jabbouli H, Mahmuddin M, Otri S, Darwish AH (2008) Application of the Bees algorithm to fuzzy clustering Pham DT, Al-Jabbouli H, Mahmuddin M, Otri S, Darwish AH (2008) Application of the Bees algorithm to fuzzy clustering
35.
Zurück zum Zitat Pham DT, Afify A, Koc E (2007) Manufacturing cell formation using the Bees algorithm Pham DT, Afify A, Koc E (2007) Manufacturing cell formation using the Bees algorithm
36.
Zurück zum Zitat Pham D, Lee J, Haj Darwish A, Soroka A (2008) Multi-objective environmental/economic power dispatch using the bees algorithm with pareto optimality, pp 422–430 Pham D, Lee J, Haj Darwish A, Soroka A (2008) Multi-objective environmental/economic power dispatch using the bees algorithm with pareto optimality, pp 422–430
37.
Zurück zum Zitat Ruz GA, Goles E (2013) Learning gene regulatory networks using the bees algorithm. Neural Comput Appl 22(1):63–70CrossRef Ruz GA, Goles E (2013) Learning gene regulatory networks using the bees algorithm. Neural Comput Appl 22(1):63–70CrossRef
38.
Zurück zum Zitat Xu S, Yu F, Luo Z, Ji Z, Pham DT, Qiu R (2011) Adaptive bees algorithm—bioinspiration from honeybee foraging to optimize fuel economy of a semi-track air-cushion vehicle. Comput J 54(9):1416–1426CrossRef Xu S, Yu F, Luo Z, Ji Z, Pham DT, Qiu R (2011) Adaptive bees algorithm—bioinspiration from honeybee foraging to optimize fuel economy of a semi-track air-cushion vehicle. Comput J 54(9):1416–1426CrossRef
39.
Zurück zum Zitat Xu W, Zhou Z, Pham D, Liu Q, Ji C, Meng W (2012) Quality of service in manufacturing networks: a service framework and its implementation. Int J Adv Manuf Technol 63(9):1227–1237CrossRef Xu W, Zhou Z, Pham D, Liu Q, Ji C, Meng W (2012) Quality of service in manufacturing networks: a service framework and its implementation. Int J Adv Manuf Technol 63(9):1227–1237CrossRef
40.
Zurück zum Zitat Douc R, Moulines E, Priouret P, Soulier P (2018) Markov chains. Springer Douc R, Moulines E, Priouret P, Soulier P (2018) Markov chains. Springer
41.
Zurück zum Zitat Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408CrossRef Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408CrossRef
42.
Zurück zum Zitat Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. IEEE, pp 1945–1950 Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. IEEE, pp 1945–1950
43.
Zurück zum Zitat Liu Y, Qin Z, Shi Z, Lu J (2007) Center particle swarm optimization. Neurocomputing 70(4–6):672–679CrossRef Liu Y, Qin Z, Shi Z, Lu J (2007) Center particle swarm optimization. Neurocomputing 70(4–6):672–679CrossRef
44.
Zurück zum Zitat Tkach I, Edan Y, Jevtic A, Nof SY (2013) Automatic multi-sensor task allocation using modified distributed bees algorithm. IEEE, pp 1401–1406 Tkach I, Edan Y, Jevtic A, Nof SY (2013) Automatic multi-sensor task allocation using modified distributed bees algorithm. IEEE, pp 1401–1406
45.
Zurück zum Zitat Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325MathSciNetCrossRef Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325MathSciNetCrossRef
46.
Zurück zum Zitat Jiao B, Lian Z, Gu X (2008) A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons Fractals 37(3):698–705CrossRef Jiao B, Lian Z, Gu X (2008) A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons Fractals 37(3):698–705CrossRef
47.
Zurück zum Zitat Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670CrossRef Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670CrossRef
48.
Zurück zum Zitat Wang L, Singh C (2009) Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans Energy Convers 24(1):163–172CrossRef Wang L, Singh C (2009) Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans Energy Convers 24(1):163–172CrossRef
Metadaten
Titel
Local Optimal Issue in Bees Algorithm: Markov Chain Analysis and Integration with Dynamic Particle Swarm Optimisation Algorithm
verfasst von
JianBang Liu
Mei Choo Ang
Kok Weng Ng
Jun Kit Chaw
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.