Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2018

19.09.2017 | RESEARCH PAPER

Local optimum in multi-material topology optimization and solution by reciprocal variables

verfasst von: Kai Long, Xuan Wang, Xianguang Gu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is revealed that the local optimum is particularly prone to occur in multi-material topology optimization using the conventional SIMP method. To overcome these undesirable phenomena, reciprocal variables are introduced into the formulation of topology optimization for minimization of total weight with the prescribed constraint of various structural responses. The SIMP scheme of multi-phase materials is adopted as the interpolation of the elemental stiffness matrix, mass matrix and weight. The sensitivities of eigenvalue and weight with respect to design variables are derived. Explicit approximations of natural eigenvalue and weight are given with the help of the first and second order Taylor series expansion. Thus, the optimization problem is solved using a sequential quadratic programming approach, by setting up a sub-problem in the form of a quadratic program. The filtering technique by solving the Helmholtz-type partial differential equation is performed to eliminate the checkerboard patterns and mesh dependence. Numerical analysis indicates that it is beneficial to avoid the local optimum by using the reciprocal SIMP formulation. Besides, the structure composed of multi-materials can achieve a lighter design than that made from the exclusive base material. The effectiveness and capability of the proposed method are also verified by nodal displacement constraint and multiple constraints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM - Control, Optimisation and Calculus of Variations 9:19–48MathSciNetCrossRefMATH Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM - Control, Optimisation and Calculus of Variations 9:19–48MathSciNetCrossRefMATH
Zurück zum Zitat Du J, Olhoff N (2005) Topology optimization of continuum structures with respect to simple and multiple eigenfrequencies. 6th world congress of structural and multidisciplinary optimization, Rio de Janeiro, Brazil Du J, Olhoff N (2005) Topology optimization of continuum structures with respect to simple and multiple eigenfrequencies. 6th world congress of structural and multidisciplinary optimization, Rio de Janeiro, Brazil
Zurück zum Zitat Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multi Optim 34(2):91–110MathSciNetCrossRefMATH Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multi Optim 34(2):91–110MathSciNetCrossRefMATH
Zurück zum Zitat Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51CrossRef Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51CrossRef
Zurück zum Zitat Eschenauer HA, Olhoff N (2011) Topology optimization of continuum structures: A review. Appl Mech Rev 54:331–390CrossRef Eschenauer HA, Olhoff N (2011) Topology optimization of continuum structures: A review. Appl Mech Rev 54:331–390CrossRef
Zurück zum Zitat Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796CrossRefMATH Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796CrossRefMATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech - T Asme 81(18):081009CrossRef Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech - T Asme 81(18):081009CrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014b) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655MathSciNetCrossRefMATH Guo X, Zhang W, Zhong W (2014b) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655MathSciNetCrossRefMATH
Zurück zum Zitat Hevjsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multi Optim 43:811–825CrossRefMATH Hevjsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multi Optim 43:811–825CrossRefMATH
Zurück zum Zitat Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049CrossRef Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049CrossRef
Zurück zum Zitat Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or Multi-phase materials. Comput Mech 43(3):393–401MathSciNetCrossRefMATH Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or Multi-phase materials. Comput Mech 43(3):393–401MathSciNetCrossRefMATH
Zurück zum Zitat Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364CrossRef Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364CrossRef
Zurück zum Zitat Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetCrossRefMATH Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetCrossRefMATH
Zurück zum Zitat Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027CrossRefMATH Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027CrossRefMATH
Zurück zum Zitat Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124CrossRefMATH Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124CrossRefMATH
Zurück zum Zitat Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multi Optim 20(1):2–11CrossRef Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multi Optim 20(1):2–11CrossRef
Zurück zum Zitat Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multi Optim 37(3):217–237MathSciNetCrossRefMATH Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multi Optim 37(3):217–237MathSciNetCrossRefMATH
Zurück zum Zitat Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45(6):1037–1067MathSciNetCrossRef
Zurück zum Zitat Sigmund O, Peterson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multi Optim 16(1):68–75CrossRef Sigmund O, Peterson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multi Optim 16(1):68–75CrossRef
Zurück zum Zitat Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multi Optim 8(4):207–227CrossRef Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multi Optim 8(4):207–227CrossRef
Zurück zum Zitat Sun R, Liu D, Xu T, Zhang T, Zuo W (2014) New Adaptive Technique of Kirsch Method for Structural Reanalysis. AIAA J 52(3):486–495CrossRef Sun R, Liu D, Xu T, Zhang T, Zuo W (2014) New Adaptive Technique of Kirsch Method for Structural Reanalysis. AIAA J 52(3):486–495CrossRef
Zurück zum Zitat Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multi Optim 52(3):527–547MathSciNetCrossRef Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multi Optim 52(3):527–547MathSciNetCrossRef
Zurück zum Zitat Rojas-Labanda S, Stolpe M (2016) An efficient second-order SQP method for structural topology optimization. Struct Multi Optim 53(6):1315–1333MathSciNetCrossRef Rojas-Labanda S, Stolpe M (2016) An efficient second-order SQP method for structural topology optimization. Struct Multi Optim 53(6):1315–1333MathSciNetCrossRef
Zurück zum Zitat Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218CrossRef Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Meth Eng 24:359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Meth Eng 24:359–373MathSciNetCrossRefMATH
Zurück zum Zitat Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optimiz 12:555–573MathSciNetCrossRefMATH Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optimiz 12:555–573MathSciNetCrossRefMATH
Zurück zum Zitat Sui Y, Peng X (2006) The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech Sinica 22:68–75MathSciNetCrossRefMATH Sui Y, Peng X (2006) The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech Sinica 22:68–75MathSciNetCrossRefMATH
Zurück zum Zitat Takakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multi Optim 49(4):621–642MathSciNetCrossRef Takakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multi Optim 49(4):621–642MathSciNetCrossRef
Zurück zum Zitat Thomsen J (1992) Topology optimization of structures composed of one or two materials. Journal of Structural Optimization 5(1–2):108–115CrossRef Thomsen J (1992) Topology optimization of structures composed of one or two materials. Journal of Structural Optimization 5(1–2):108–115CrossRef
Zurück zum Zitat Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetCrossRefMATH Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetCrossRefMATH
Zurück zum Zitat Wang M, Wang X (2004) "Color" level sets: a multi-phase method for structural topology optimization with Multi-phase materials. Comput Methods Appl Mech Eng 193(6):469–496MathSciNetCrossRefMATH Wang M, Wang X (2004) "Color" level sets: a multi-phase method for structural topology optimization with Multi-phase materials. Comput Methods Appl Mech Eng 193(6):469–496MathSciNetCrossRefMATH
Zurück zum Zitat Wittrick WH (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J Royal Aeronaut Soc 66:590–591CrossRef Wittrick WH (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J Royal Aeronaut Soc 66:590–591CrossRef
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(6):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(6):885–896CrossRef
Zurück zum Zitat Ye HL, Wang WW, Chen N, Sui YK (2016) Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function. Acta Mech Sinica 32(4):649–658MathSciNetCrossRefMATH Ye HL, Wang WW, Chen N, Sui YK (2016) Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function. Acta Mech Sinica 32(4):649–658MathSciNetCrossRefMATH
Zurück zum Zitat Yin L, Ananthasuresh GK (2001) Topology of compliant mechanisms with Multi-phase materials using a peak function material interpolation scheme. Struct Multi Optim 23(1):49–62CrossRef Yin L, Ananthasuresh GK (2001) Topology of compliant mechanisms with Multi-phase materials using a peak function material interpolation scheme. Struct Multi Optim 23(1):49–62CrossRef
Zurück zum Zitat Zargham S, Ward TA, Ramli R, Badruddin IA (2016) Topology optimization: a review for structural designs under vibration problems. Struct Multi Optim 53(6):1157–1177MathSciNetCrossRef Zargham S, Ward TA, Ramli R, Badruddin IA (2016) Topology optimization: a review for structural designs under vibration problems. Struct Multi Optim 53(6):1157–1177MathSciNetCrossRef
Zurück zum Zitat Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multi Optim 53:1243–1260MathSciNetCrossRef Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multi Optim 53:1243–1260MathSciNetCrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized Shape optimization. Comput Methods Appl Mech 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized Shape optimization. Comput Methods Appl Mech 89(1–3):309–336CrossRef
Zurück zum Zitat Zhou SW, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multi Optim 33(2):89–111MathSciNetCrossRefMATH Zhou SW, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multi Optim 33(2):89–111MathSciNetCrossRefMATH
Zurück zum Zitat Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multi Optim 55:477–491MathSciNetCrossRef Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multi Optim 55:477–491MathSciNetCrossRef
Zurück zum Zitat Zuo W, Xu T, Zhang T, Xu T (2011) Fast structural optimization with frequency constraints by genetic algorithm using eigenvalue reanalysis methods. Struct Multi Optim 43(6):799–810CrossRef Zuo W, Xu T, Zhang T, Xu T (2011) Fast structural optimization with frequency constraints by genetic algorithm using eigenvalue reanalysis methods. Struct Multi Optim 43(6):799–810CrossRef
Metadaten
Titel
Local optimum in multi-material topology optimization and solution by reciprocal variables
verfasst von
Kai Long
Xuan Wang
Xianguang Gu
Publikationsdatum
19.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1811-4

Weitere Artikel der Ausgabe 3/2018

Structural and Multidisciplinary Optimization 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.