Skip to main content
Erschienen in: BIT Numerical Mathematics 2/2020

29.11.2019

Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains

verfasst von: Shweta Srivastava, Sashikumaar Ganesan

Erschienen in: BIT Numerical Mathematics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the numerical analysis of a stabilized finite element scheme with discontinuous Galerkin (dG) discretization in time for the solution of a transient convection–diffusion–reaction equation in time-dependent domains. In particular, the local projection stabilization and the higher order dG time stepping scheme are used for convection dominated problems. Further, an arbitrary Lagrangian–Eulerian formulation is used to handle the time-dependent domain. The stability and error estimates are given for the proposed numerical scheme. The validation of the proposed local projection stabilization scheme with higher order dG time discretization is demonstrated with appropriate numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)MathSciNetMATH Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)MathSciNetMATH
2.
Zurück zum Zitat Badia, S., Codina, R.: Analysis of a stabilized finite element approximation of the of the transient convection–diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44(5), 2159–2197 (2006)MathSciNetMATH Badia, S., Codina, R.: Analysis of a stabilized finite element approximation of the of the transient convection–diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44(5), 2159–2197 (2006)MathSciNetMATH
3.
Zurück zum Zitat Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)MathSciNetMATH Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)MathSciNetMATH
4.
Zurück zum Zitat Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004) Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004)
5.
Zurück zum Zitat Becker, R., Vexler, B.: Optimal control of the convection–diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)MathSciNetMATH Becker, R., Vexler, B.: Optimal control of the convection–diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)MathSciNetMATH
6.
Zurück zum Zitat Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193, 4717–4739 (2004)MathSciNetMATH Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193, 4717–4739 (2004)MathSciNetMATH
7.
Zurück zum Zitat Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: stability. SIAM J. Numer. Anal. 51, 577–604 (2013)MathSciNetMATH Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: stability. SIAM J. Numer. Anal. 51, 577–604 (2013)MathSciNetMATH
8.
Zurück zum Zitat Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: a priori error analysis. Numer. Math. 125, 225–257 (2013)MathSciNetMATH Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: a priori error analysis. Numer. Math. 125, 225–257 (2013)MathSciNetMATH
9.
Zurück zum Zitat Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)MathSciNetMATH Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)MathSciNetMATH
10.
Zurück zum Zitat Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27(2–3), 116–147 (2009)MathSciNetMATH Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27(2–3), 116–147 (2009)MathSciNetMATH
11.
Zurück zum Zitat Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetMATH Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetMATH
12.
Zurück zum Zitat Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199, 1114–1123 (2010)MathSciNetMATH Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199, 1114–1123 (2010)MathSciNetMATH
13.
Zurück zum Zitat Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)MathSciNetMATH Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)MathSciNetMATH
14.
Zurück zum Zitat Burman, E., Fernandez, M., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006)MathSciNetMATH Burman, E., Fernandez, M., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006)MathSciNetMATH
15.
Zurück zum Zitat Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)MathSciNetMATH Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)MathSciNetMATH
16.
Zurück zum Zitat Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190, 1579–1599 (2000)MathSciNetMATH Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190, 1579–1599 (2000)MathSciNetMATH
17.
Zurück zum Zitat Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput. Vis. Sci. 4(3), 167–174 (2002)MathSciNetMATH Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput. Vis. Sci. 4(3), 167–174 (2002)MathSciNetMATH
18.
Zurück zum Zitat Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7(2), 105–131 (1999)MathSciNetMATH Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7(2), 105–131 (1999)MathSciNetMATH
19.
Zurück zum Zitat Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193, 4097–4116 (2004)MathSciNetMATH Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193, 4097–4116 (2004)MathSciNetMATH
20.
Zurück zum Zitat Ganesan, S., Srivastava, S.: ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. Appl. Math. Comput. 303, 128–145 (2017)MathSciNetMATH Ganesan, S., Srivastava, S.: ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. Appl. Math. Comput. 303, 128–145 (2017)MathSciNetMATH
21.
Zurück zum Zitat Ganesan, S., Tobiska, L.: Stabilization by local projection for convection–diffusion and incompressible flow problems. J. Sci. Comput. 43(3), 326–342 (2010)MathSciNetMATH Ganesan, S., Tobiska, L.: Stabilization by local projection for convection–diffusion and incompressible flow problems. J. Sci. Comput. 43(3), 326–342 (2010)MathSciNetMATH
22.
Zurück zum Zitat Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)MathSciNetMATH Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)MathSciNetMATH
23.
Zurück zum Zitat Guermond, J.L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)MathSciNetMATH Guermond, J.L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)MathSciNetMATH
24.
Zurück zum Zitat Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusion equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MATH Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusion equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MATH
25.
Zurück zum Zitat John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)MathSciNetMATH John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)MathSciNetMATH
26.
Zurück zum Zitat Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)MathSciNetMATH Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)MathSciNetMATH
27.
Zurück zum Zitat Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007)MathSciNetMATH Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007)MathSciNetMATH
28.
Zurück zum Zitat Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)MATH Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)MATH
29.
Zurück zum Zitat Srivastava, S., Ganesan, S.: On the temporal discretizations of convection dominated convection–diffusion equations in time-dependent domain. Pro-Mathematica 30(59), 99–137 (2018) Srivastava, S., Ganesan, S.: On the temporal discretizations of convection dominated convection–diffusion equations in time-dependent domain. Pro-Mathematica 30(59), 99–137 (2018)
30.
Zurück zum Zitat Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 3rd edn. Springer, Berlin (2008)MATH Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 3rd edn. Springer, Berlin (2008)MATH
31.
Zurück zum Zitat Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996)MathSciNetMATH Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996)MathSciNetMATH
Metadaten
Titel
Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains
verfasst von
Shweta Srivastava
Sashikumaar Ganesan
Publikationsdatum
29.11.2019
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 2/2020
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-019-00783-2

Weitere Artikel der Ausgabe 2/2020

BIT Numerical Mathematics 2/2020 Zur Ausgabe