Skip to main content
Erschienen in: Autonomous Robots 1/2017

23.12.2015

Localization aware sampling and connection strategies for incremental motion planning under uncertainty

verfasst von: Vinay Pilania, Kamal Gupta

Erschienen in: Autonomous Robots | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present efficient localization aware sampling and connection strategies for incremental sampling-based stochastic motion planners. For sampling, we introduce a new measure of localization ability of a sample, one that is independent of the path taken to reach the sample and depends only on the sensor measurement at the sample. Using this measure, our sampling strategy puts more samples in regions where sensor data is able to achieve higher uncertainty reduction while maintaining adequate samples in regions where uncertainty reduction is poor. This leads to a less dense roadmap and hence results in significant time savings. We also show that a stochastic planner that uses our sampling strategy is probabilistically complete under some reasonable conditions on parameters. We then present a localization aware efficient connection strategy that uses an uncertainty aware approach in connecting the new sample to the neighbouring nodes, i.e., it uses an uncertainty measure (as opposed to distance) to connect the new sample to a neighboring node so that the new sample is reachable with least uncertainty (“the closest”), and furthermore, connections to other neighbouring nodes are made only if the new path to them (via the new sample) helps to reduce the uncertainty at those nodes. This is in contrast to current incremental stochastic motion planners that simply connect the new sample to all of the neighbouring nodes and therefore, take more search queue iterations to update the paths (i.e., uncertainty propagation). Hence, our efficient connection strategy, in addition to eliminating the inefficient edges that do not contribute to better localization, also reduces the number of search queue iterations. We provide simulation results that show that (a) our localization aware sampling strategy places less samples and find a well-localized path in shorter time with little compromise on the quality of path as compared to existing sampling techniques, (b) our localization aware connection strategy finds a well-localized path in shorter time with no compromise on the quality of path as compared to existing connection techniques, and finally (c) combined use of our sampling and connection strategies further reduces the planner run time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agha-mohammadi, A., Chakravorty, S., & Amato, N. (2014). FIRM: Sampling-based feedback motion planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2), 268–304.CrossRef Agha-mohammadi, A., Chakravorty, S., & Amato, N. (2014). FIRM: Sampling-based feedback motion planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research, 33(2), 268–304.CrossRef
Zurück zum Zitat Bai, H., Hsu, D., & Lee, W. S. (2014). Integrated perception and planning in the continuous space: A POMDP approach. The International Journal of Robotics Research, 33(9), 1288–1302.CrossRef Bai, H., Hsu, D., & Lee, W. S. (2014). Integrated perception and planning in the continuous space: A POMDP approach. The International Journal of Robotics Research, 33(9), 1288–1302.CrossRef
Zurück zum Zitat Bai, H., Cai, S., Ye, N., Hsu, D. & Lee, W.S. (2015). Intention-aware online POMDP planning for autonomous driving in a crowd. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 454–460). Bai, H., Cai, S., Ye, N., Hsu, D. & Lee, W.S. (2015). Intention-aware online POMDP planning for autonomous driving in a crowd. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 454–460).
Zurück zum Zitat Bouilly, B., Simeon, T. & Alami, R. (1995). A numerical technique for planning motion strategies of a mobile robot in presence of uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1327–1332). Bouilly, B., Simeon, T. & Alami, R. (1995). A numerical technique for planning motion strategies of a mobile robot in presence of uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1327–1332).
Zurück zum Zitat Bry, A. & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 723–730). Bry, A. & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 723–730).
Zurück zum Zitat Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E., et al. (2005). Principles of robot motion: theory, algorithms, and implementations. Cambridge, MA: MIT Press.MATH Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E., et al. (2005). Principles of robot motion: theory, algorithms, and implementations. Cambridge, MA: MIT Press.MATH
Zurück zum Zitat Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E. & Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations. title, MIT Press, Cambridge, MA, chap 7, pp. 242–246. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E. & Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations. title, MIT Press, Cambridge, MA, chap 7, pp. 242–246.
Zurück zum Zitat Fox, D., Burgard, W., Dellaert, F. & Thrun, S. (1999). Monte carlo localization: Efficient position estimation for mobile robots. In Proceedings of the National Conference on Artificial Intelligence (pp. 343–349). Fox, D., Burgard, W., Dellaert, F. & Thrun, S. (1999). Monte carlo localization: Efficient position estimation for mobile robots. In Proceedings of the National Conference on Artificial Intelligence (pp. 343–349).
Zurück zum Zitat Fraichard, T. & Mermond, R. (1998). Path planning with uncertainty for car-like robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 27–32). Fraichard, T. & Mermond, R. (1998). Path planning with uncertainty for car-like robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 27–32).
Zurück zum Zitat Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. International Journal of Robotics Research (IJRR), 25(7), 627–643.CrossRefMATH Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. International Journal of Robotics Research (IJRR), 25(7), 627–643.CrossRefMATH
Zurück zum Zitat Huang, Y. & Gupta, K. (2008). RRT-SLAM for motion planning with motion and map uncertainty for robot exploration. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 22–26). Huang, Y. & Gupta, K. (2008). RRT-SLAM for motion planning with motion and map uncertainty for robot exploration. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 22–26).
Zurück zum Zitat Huang, Y. & Gupta, K. (2009). Collision-probability constrained PRM for a manipulator with base pose uncertainty. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 1426–1432). Huang, Y. & Gupta, K. (2009). Collision-probability constrained PRM for a manipulator with base pose uncertainty. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 1426–1432).
Zurück zum Zitat Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101, 99–134.CrossRefMATHMathSciNet Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101, 99–134.CrossRefMATHMathSciNet
Zurück zum Zitat Karaman, S. & Frazzoli, E. (2010). Incremental sampling-based optimal motion planning. In Proceedings of the Robotics: Science and Systems (RSS). Karaman, S. & Frazzoli, E. (2010). Incremental sampling-based optimal motion planning. In Proceedings of the Robotics: Science and Systems (RSS).
Zurück zum Zitat Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research (IJRR), 30(7), 846–894.CrossRefMATH Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research (IJRR), 30(7), 846–894.CrossRefMATH
Zurück zum Zitat Karaman, S., Walter, M., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the RRT*. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Karaman, S., Walter, M., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the RRT*. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
Zurück zum Zitat Knepper, R. A., & Mason, M. T. (2012). Real-time informed path sampling for motion planning search. International Journal of Robotics Research (IJRR), 31(11), 1231–1250.CrossRef Knepper, R. A., & Mason, M. T. (2012). Real-time informed path sampling for motion planning search. International Journal of Robotics Research (IJRR), 31(11), 1231–1250.CrossRef
Zurück zum Zitat Kurniawati, H., Du, Y., Hsu, D. & Lee, W.S. (2009). Motion planning under uncertainty for robotic tasks with long time horizons. In Proceedings of the International Symposium on Robotics Research. Kurniawati, H., Du, Y., Hsu, D. & Lee, W.S. (2009). Motion planning under uncertainty for robotic tasks with long time horizons. In Proceedings of the International Symposium on Robotics Research.
Zurück zum Zitat Kurniawati, H., Bandyopadhyay, T., & Patrikalakis, N. (2012). Global motion planning under uncertain motion, sensing, and environment map. Autonomous Robots, 33(3), 255–272.CrossRef Kurniawati, H., Bandyopadhyay, T., & Patrikalakis, N. (2012). Global motion planning under uncertain motion, sensing, and environment map. Autonomous Robots, 33(3), 255–272.CrossRef
Zurück zum Zitat Lambert, A. & Gruyer, D. (2003). Safe path planning in an uncertain-configuration space. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 4185–4190), Roma, Italy. Lambert, A. & Gruyer, D. (2003). Safe path planning in an uncertain-configuration space. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 4185–4190), Roma, Italy.
Zurück zum Zitat LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.CrossRefMATH LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.CrossRefMATH
Zurück zum Zitat Lazanas, A., & Latombe, J. C. (1995). Motion planning with uncertainty: A landmark approach. Artificial Intelligence, 76(1–2), 285–317.MATH Lazanas, A., & Latombe, J. C. (1995). Motion planning with uncertainty: A landmark approach. Artificial Intelligence, 76(1–2), 285–317.MATH
Zurück zum Zitat Melchior N.A. & Simmons, R. (2007). Particle RRT for path planning with uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1617–1624), Roma, Italy. Melchior N.A. & Simmons, R. (2007). Particle RRT for path planning with uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1617–1624), Roma, Italy.
Zurück zum Zitat Missiuro, P.E. & Roy, N. (2006). Adapting probabilistic roadmaps to handle uncertain maps. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1261–1267). Missiuro, P.E. & Roy, N. (2006). Adapting probabilistic roadmaps to handle uncertain maps. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1261–1267).
Zurück zum Zitat Pineau, J., Gordon, G. & Thrun, S. (2003). Point-based value iteration: An anytime algorithm for POMDPs. In International Joint Conferences on Artificial Intelligence (pp. 1025–1032). Pineau, J., Gordon, G. & Thrun, S. (2003). Point-based value iteration: An anytime algorithm for POMDPs. In International Joint Conferences on Artificial Intelligence (pp. 1025–1032).
Zurück zum Zitat Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. The International Journal of Robotics Research, 28(11–12), 1448–1465.CrossRef Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. The International Journal of Robotics Research, 28(11–12), 1448–1465.CrossRef
Zurück zum Zitat Ribeiro, M. I. (2004). Gaussian probability density functions: Properties and error characterization. Institute for Systems and Robotics: Technical report. Ribeiro, M. I. (2004). Gaussian probability density functions: Properties and error characterization. Institute for Systems and Robotics: Technical report.
Zurück zum Zitat Stachniss, C., Grisetti, G. & Burgard, W. (2005) Information gain-based exploration using rao-blackwellized particle filters. In Proceedings of the Robotics: Science and Systems (RSS) (pp. 65–72). Stachniss, C., Grisetti, G. & Burgard, W. (2005) Information gain-based exploration using rao-blackwellized particle filters. In Proceedings of the Robotics: Science and Systems (RSS) (pp. 65–72).
Zurück zum Zitat van den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895–913.CrossRef van den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895–913.CrossRef
Metadaten
Titel
Localization aware sampling and connection strategies for incremental motion planning under uncertainty
verfasst von
Vinay Pilania
Kamal Gupta
Publikationsdatum
23.12.2015
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 1/2017
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-015-9536-y

Weitere Artikel der Ausgabe 1/2017

Autonomous Robots 1/2017 Zur Ausgabe

Neuer Inhalt