Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2017 | Methodologies and Application | Ausgabe 14/2018

Soft Computing 14/2018

Locally adaptive multiple kernel k-means algorithm based on shared nearest neighbors

Zeitschrift:
Soft Computing > Ausgabe 14/2018
Autoren:
Shifei Ding, Xiao Xu, Shuyan Fan, Yu Xue
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Most of multiple kernel clustering algorithms aim to find the optimal kernel combination and have to calculate kernel weights iteratively. For the kernel methods, the scale parameter of Gaussian kernel is usually searched in a number of candidate values of the parameter and the best is selected. In this paper, a novel locally adaptive multiple kernel k-means algorithm is proposed based on shared nearest neighbors. Our similarity measure meets the requirements of the clustering hypothesis, which can describe the relations between data points more reasonably by taking local and global structures into consideration. We assign to each data point a local scale parameter and combine the parameter with shared nearest neighbors to construct kernel matrix. According to the local distribution, the local scale parameter of Gaussian kernel is generated adaptively. Experiments show that the proposed algorithm can effectively deal with the clustering problem of data sets with complex structure or multiple scales.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 14/2018

Soft Computing 14/2018 Zur Ausgabe

Premium Partner

    Bildnachweise