Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.07.2019 | Regular Paper | Ausgabe 5/2019

The VLDB Journal 5/2019

Location prediction in large-scale social networks: an in-depth benchmarking study

Zeitschrift:
The VLDB Journal > Ausgabe 5/2019
Autoren:
Nur Al Hasan Haldar, Jianxin Li, Mark Reynolds, Timos Sellis, Jeffrey Xu Yu
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Location details of social users are important in diverse applications ranging from news recommendation systems to disaster management. However, user location is not easy to obtain from social networks because many users do not bother to provide this information or decline to do so due to privacy concerns. Thus, it is useful to estimate user locations from implicit information in the network. For this purpose, many location prediction models have been proposed that exploit different network features. Unfortunately, these models have not been benchmarked on common datasets using standard metrics. We fill this gap and provide an in-depth empirical comparison of eight representative prediction models using five metrics on four real-world large-scale datasets, namely Twitter, Gowalla, Brightkite, and Foursquare. We formulate a generalized procedure-oriented location prediction framework which allows us to evaluate and compare the prediction models systematically and thoroughly under extensive experimental settings. Based on our results, we perform a detailed analysis of the merits and limitations of the models providing significant insights into the location prediction problem.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

The VLDB Journal 5/2019 Zur Ausgabe

Premium Partner