Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2020

17.09.2020

Long-Term Creep Behavior of a CoCrFeNiMn High-Entropy Alloy

verfasst von: K. A. Rozman, M. Detrois, T. Liu, M. C. Gao, P. D. Jablonski, J. A. Hawk

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The potential of high-entropy alloys (HEAs) to meet or exceed austenitic stainless steel performance with the additional benefit of improved hot corrosion/oxidation resistance makes FCC HEAs attractive for use in energy applications. While shorter-term creep tests have been reported in the literature on HEAs, not all methodologies utilize repeatable techniques. This manuscript reports on over 23,500 accumulated hours of tensile creep testing with adherence to ASTM standards on a melt-solidified ingot of CoCrFeNiMn HEA converted to wrought plate using conventional thermo-mechanical processing techniques. The typical standard creep analyses are reported, i.e., Larson–Miller parameter, Monkman–Grant relationship, activation energy for creep, and creep stress exponents were calculated and compared to previously reported short-term creep tests. Additionally, characteristics of creep fracture and microstructural evolution are reported with cursory dislocation mechanisms investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang et al., Rare-Earth High Entropy Alloys with Hexagonal Close-Packed Structure, J. Appl. Phys., 2018, 124, p 195101 J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang et al., Rare-Earth High Entropy Alloys with Hexagonal Close-Packed Structure, J. Appl. Phys., 2018, 124, p 195101
2.
Zurück zum Zitat M.C. Gao, P.D. Jablonski, J.A. Hawk, D.E, Alman. High-Entropy Alloys: Formation and Properties, in ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries (2018). M.C. Gao, P.D. Jablonski, J.A. Hawk, D.E, Alman. High-Entropy Alloys: Formation and Properties, in ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries (2018).
3.
Zurück zum Zitat H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao et al., A New Strategy to Design Eutectic High-Entropy Alloys Using Simple Mixture Method, Mater. Des., 2018, 142, p 101–105 H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao et al., A New Strategy to Design Eutectic High-Entropy Alloys Using Simple Mixture Method, Mater. Des., 2018, 142, p 101–105
4.
Zurück zum Zitat R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang et al., Phase Stability and Transformation in a Light-Weight High-Entropy Alloy, Acta Mater., 2018, 146, p 280–293 R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang et al., Phase Stability and Transformation in a Light-Weight High-Entropy Alloy, Acta Mater., 2018, 146, p 280–293
5.
Zurück zum Zitat T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng et al., Tailoring Magnetic Behavior of CoFeMnNiX (X = Al, Cr, Ga, Sn) High Entropy Alloys by Metal Doping, Acta Mater., 2017, 130, p 10–18 T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng et al., Tailoring Magnetic Behavior of CoFeMnNiX (X = Al, Cr, Ga, Sn) High Entropy Alloys by Metal Doping, Acta Mater., 2017, 130, p 10–18
6.
Zurück zum Zitat M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom et al., Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21, p 238–251 M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom et al., Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21, p 238–251
7.
Zurück zum Zitat M.C. Gao, P. Gao, J.A. Hawk, L.Z. Ouyang, D.E. Alman, and M. Widom, Computational Modeling of High-Entropy Alloys: Structures: Thermodynamics and Elasticity, J. Mater. Res., 2017, 32, p 3627–3641 M.C. Gao, P. Gao, J.A. Hawk, L.Z. Ouyang, D.E. Alman, and M. Widom, Computational Modeling of High-Entropy Alloys: Structures: Thermodynamics and Elasticity, J. Mater. Res., 2017, 32, p 3627–3641
8.
Zurück zum Zitat H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou et al., NbTaV-(Ti, W) Refractory High-Entropy Alloys: Experiments and Modeling, Mater. Sci. Eng. A, 2016, 674, p 203–211 H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou et al., NbTaV-(Ti, W) Refractory High-Entropy Alloys: Experiments and Modeling, Mater. Sci. Eng. A, 2016, 674, p 203–211
9.
Zurück zum Zitat H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou, Correction to Yao, H.; Qiao, J.-W.; Gao, M.C.; Hawk, J.A.; Ma, S.-G.; Zhou, H. MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189 H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou, Correction to Yao, H.; Qiao, J.-W.; Gao, M.C.; Hawk, J.A.; Ma, S.-G.; Zhou, H. MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189
10.
Zurück zum Zitat H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189 H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189
11.
Zurück zum Zitat M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Mater. Trans. A, 2016, 47, p 3322–3332 M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Mater. Trans. A, 2016, 47, p 3322–3332
12.
Zurück zum Zitat S. Antonov, M. Detrois, and S. Tin, Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys, Metall. Mater. Trans. A, 2018, 49, p 305–320 S. Antonov, M. Detrois, and S. Tin, Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys, Metall. Mater. Trans. A, 2018, 49, p 305–320
13.
Zurück zum Zitat M. Detrois, S. Antonov, and S. Tin, Phase Stability and Thermodynamic Database Validation in a Set of Non-equiatomic Al-Co-Cr-Fe-Nb-Ni High-Entropy Alloys, Intermetallics, 2019, 104, p 103–112 M. Detrois, S. Antonov, and S. Tin, Phase Stability and Thermodynamic Database Validation in a Set of Non-equiatomic Al-Co-Cr-Fe-Nb-Ni High-Entropy Alloys, Intermetallics, 2019, 104, p 103–112
14.
Zurück zum Zitat M.C. Gao, C.S. Carney, Ö.N. Doğan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Design of Refractory High-Entropy Alloys, JOM, 2015, 67, p 2653–2669 M.C. Gao, C.S. Carney, Ö.N. Doğan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Design of Refractory High-Entropy Alloys, JOM, 2015, 67, p 2653–2669
16.
Zurück zum Zitat P.D. Jablonski, J.J. Licavoli, M.C. Gao, and J.A. Hawk, Manufacturing of High Entropy Alloys, JOM, 2015, 67, p 2278–2287 P.D. Jablonski, J.J. Licavoli, M.C. Gao, and J.A. Hawk, Manufacturing of High Entropy Alloys, JOM, 2015, 67, p 2278–2287
17.
Zurück zum Zitat J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform., 2015, 24, p 3685–3698 J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform., 2015, 24, p 3685–3698
18.
Zurück zum Zitat M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk, Hot Deformation Behavior and Flow Stress Modeling of a Ni-Based Superalloy, Mater. Charact., 2019, 157, p 109915 M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk, Hot Deformation Behavior and Flow Stress Modeling of a Ni-Based Superalloy, Mater. Charact., 2019, 157, p 109915
19.
Zurück zum Zitat D. Li, M.C. Gao, J.A. Hawk, and Y. Zhang, Annealing Effect for the Al0.3CoCrFeNi High-Entropy Alloy Fibers, J. Alloys Compd., 2019, 778, p 23–29 D. Li, M.C. Gao, J.A. Hawk, and Y. Zhang, Annealing Effect for the Al0.3CoCrFeNi High-Entropy Alloy Fibers, J. Alloys Compd., 2019, 778, p 23–29
20.
Zurück zum Zitat M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk et al., Wear Behavior of Al0.6CoCrFeNi High-Entropy Alloys: Effect of Environments, J. Mater. Res., 2018, 33, p 3310–3320 M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk et al., Wear Behavior of Al0.6CoCrFeNi High-Entropy Alloys: Effect of Environments, J. Mater. Res., 2018, 33, p 3310–3320
21.
Zurück zum Zitat H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical Properties of Refractory High-Entropy Alloys: Experiments and Modeling, J. Alloys Compd., 2017, 696, p 1139–1150 H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical Properties of Refractory High-Entropy Alloys: Experiments and Modeling, J. Alloys Compd., 2017, 696, p 1139–1150
22.
Zurück zum Zitat M. Detrois, P.D. Jablonski, S. Antonov, S. Li, Y. Ren, S. Tin et al., Design and Thermomechanical Properties of a γ′ Percipitate-Strengthened Ni-Based Superalloy with High Entropy γ Matrix, J. Alloys Compd., 2019, 792, p 550–560 M. Detrois, P.D. Jablonski, S. Antonov, S. Li, Y. Ren, S. Tin et al., Design and Thermomechanical Properties of a γ′ Percipitate-Strengthened Ni-Based Superalloy with High Entropy γ Matrix, J. Alloys Compd., 2019, 792, p 550–560
23.
Zurück zum Zitat G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67, p 2326–2339 G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67, p 2326–2339
24.
Zurück zum Zitat Ö.N. Doğan, B.C. Nielsen, and J.A. Hawk, Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S, Oxid. Met., 2013, 80, p 177–190 Ö.N. Doğan, B.C. Nielsen, and J.A. Hawk, Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S, Oxid. Met., 2013, 80, p 177–190
25.
Zurück zum Zitat A.A. Rodriguez, J.H. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, et al. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions. Adv. Mater. Sci. Eng.. 2018;2018:11. A.A. Rodriguez, J.H. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, et al. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions. Adv. Mater. Sci. Eng.. 2018;2018:11.
26.
Zurück zum Zitat A. Rodriguez, J.H. Tylczak, and M. Ziomek-Moroz, Corrosion Behavior of CoCrFeMnNi High-Entropy Alloys (HEAs) Under Aqueous Acidic Conditions, ECS Trans., 2017, 77, p 741–752 A. Rodriguez, J.H. Tylczak, and M. Ziomek-Moroz, Corrosion Behavior of CoCrFeMnNi High-Entropy Alloys (HEAs) Under Aqueous Acidic Conditions, ECS Trans., 2017, 77, p 741–752
27.
Zurück zum Zitat A. Di Gianfrancesco, S.T. Vipraio, and D. Venditti, Long Term Microstructural Evolution of 9-12%Cr Steel Grades for Steam Power Generation Plants, Procedia Eng., 2013, 55, p 27–35 A. Di Gianfrancesco, S.T. Vipraio, and D. Venditti, Long Term Microstructural Evolution of 9-12%Cr Steel Grades for Steam Power Generation Plants, Procedia Eng., 2013, 55, p 27–35
28.
Zurück zum Zitat W. Xia, X. Zhao, L. Yue, and Z. Zhang, Microstructural Evolution and Creep Mechanisms in Ni-Based Single Crystal Superalloys: A Review, J. Alloys Compd., 2020, 819, p 152954 W. Xia, X. Zhao, L. Yue, and Z. Zhang, Microstructural Evolution and Creep Mechanisms in Ni-Based Single Crystal Superalloys: A Review, J. Alloys Compd., 2020, 819, p 152954
29.
Zurück zum Zitat E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106–109 E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106–109
30.
Zurück zum Zitat G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2015, 623, p 348–353 G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2015, 623, p 348–353
31.
Zurück zum Zitat T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, and H. Wang, The Influence of Al Elements on the Structure and the Creep Behavior of AlxCoCrFeNi High Entropy Alloys, Mater. Lett., 2016, 164, p 344–347 T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, and H. Wang, The Influence of Al Elements on the Structure and the Creep Behavior of AlxCoCrFeNi High Entropy Alloys, Mater. Lett., 2016, 164, p 344–347
32.
Zurück zum Zitat F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler et al., Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi After Prolonged Anneals at Intermediate Temperatures, Acta Mater., 2016, 112, p 40–52 F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler et al., Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi After Prolonged Anneals at Intermediate Temperatures, Acta Mater., 2016, 112, p 40–52
33.
Zurück zum Zitat S.I. Hong, J. Moon, S.K. Hong, and H.S. Kim, Thermally Activated Deformation and the Rate Controlling Mechanism in CoCrFeMnNi High Entropy Alloy, Mater. Sci. Eng. A, 2017, 682, p 569–576 S.I. Hong, J. Moon, S.K. Hong, and H.S. Kim, Thermally Activated Deformation and the Rate Controlling Mechanism in CoCrFeMnNi High Entropy Alloy, Mater. Sci. Eng. A, 2017, 682, p 569–576
34.
Zurück zum Zitat Y.B. Kang, S.H. Shim, K.H. Lee, and S.I. Hong, Dislocation Creep Behavior of CoCrFeMnNi High Entropy Alloy at Intermediate Temperatures, Mater. Res. Lett., 2018, 6, p 689–695 Y.B. Kang, S.H. Shim, K.H. Lee, and S.I. Hong, Dislocation Creep Behavior of CoCrFeMnNi High Entropy Alloy at Intermediate Temperatures, Mater. Res. Lett., 2018, 6, p 689–695
35.
Zurück zum Zitat C. Cao, J. Fu, T. Tong, Y. Hao, P. Gu, H. Hao et al., Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy, Entropy, 2018, 20, p 960 C. Cao, J. Fu, T. Tong, Y. Hao, P. Gu, H. Hao et al., Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy, Entropy, 2018, 20, p 960
36.
Zurück zum Zitat D.-H. Lee, M.-Y. Seok, Y. Zhao, I.-C. Choi, J. He, Z. Lu et al., Spherical Nanoindentation Creep Behavior of Nanocrystalline and Coarse-Grained CoCrFeMnNi High-Entropy Alloys, Acta Mater., 2016, 109, p 314–322 D.-H. Lee, M.-Y. Seok, Y. Zhao, I.-C. Choi, J. He, Z. Lu et al., Spherical Nanoindentation Creep Behavior of Nanocrystalline and Coarse-Grained CoCrFeMnNi High-Entropy Alloys, Acta Mater., 2016, 109, p 314–322
37.
Zurück zum Zitat B. Wang, H. He, M. Naeem, S. Lan, S. Harjo, T. Kawasaki et al., Deformation of CoCrFeNi High Entropy Alloy at Large Strain, Scr. Mater., 2018, 155, p 54–57 B. Wang, H. He, M. Naeem, S. Lan, S. Harjo, T. Kawasaki et al., Deformation of CoCrFeNi High Entropy Alloy at Large Strain, Scr. Mater., 2018, 155, p 54–57
38.
Zurück zum Zitat T. Zhang, L. Xin, F. Wu, R. Zhao, J. Xiang, M. Chen et al., Microstructure and Mechanical Properties of FexCoCrNiMn High-Entropy Alloys, J. Mater. Sci. Technol., 2019, 35, p 2331–2335 T. Zhang, L. Xin, F. Wu, R. Zhao, J. Xiang, M. Chen et al., Microstructure and Mechanical Properties of FexCoCrNiMn High-Entropy Alloys, J. Mater. Sci. Technol., 2019, 35, p 2331–2335
39.
Zurück zum Zitat S. Chen, W. Li, X. Xie, J. Brechtl, B. Chen, P. Li et al., Nanoscale Serration and Creep Characteristics of Al0.5CoCrCuFeNi High-Entropy Alloys, J. Alloys Compd., 2018, 752, p 464–475 S. Chen, W. Li, X. Xie, J. Brechtl, B. Chen, P. Li et al., Nanoscale Serration and Creep Characteristics of Al0.5CoCrCuFeNi High-Entropy Alloys, J. Alloys Compd., 2018, 752, p 464–475
40.
Zurück zum Zitat J. Dean, J. Campbell, G. Aldrich-Smith, and T.W. Clyne, A Critical Assessment of the “Stable Indenter Velocity” Method for Obtaining the Creep Stress Exponent from Indentation Data, Acta Mater., 2014, 80, p 56–66 J. Dean, J. Campbell, G. Aldrich-Smith, and T.W. Clyne, A Critical Assessment of the “Stable Indenter Velocity” Method for Obtaining the Creep Stress Exponent from Indentation Data, Acta Mater., 2014, 80, p 56–66
41.
Zurück zum Zitat J. Campbell, J. Dean, and T.W. Clyne, Limit Case Analysis of the “Stable Indenter Velocity” Method for Obtaining Creep Stress Exponents from Constant Load Indentation Creep Tests, Mech. Time-Depend. Mater., 2017, 21, p 31–43 J. Campbell, J. Dean, and T.W. Clyne, Limit Case Analysis of the “Stable Indenter Velocity” Method for Obtaining Creep Stress Exponents from Constant Load Indentation Creep Tests, Mech. Time-Depend. Mater., 2017, 21, p 31–43
42.
Zurück zum Zitat P.D. Jablonski and J.A. Hawk, Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results, J. Mater. Eng. Perform., 2017, 26, p 4–13 P.D. Jablonski and J.A. Hawk, Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results, J. Mater. Eng. Perform., 2017, 26, p 4–13
43.
Zurück zum Zitat P.J.J. Hawk, Considerations for Homogenizing Alloys, in 8th International Symposium on Superalloy 718 and Derivatives, pp. 823–840 (2014). P.J.J. Hawk, Considerations for Homogenizing Alloys, in 8th International Symposium on Superalloy 718 and Derivatives, pp. 823–840 (2014).
44.
Zurück zum Zitat P.D. Jablonski, J.A. Hawk, Thermodynamic and Kinetic Simulation and Experimental Results Homogenizing Advanced Alloys, in Conference Proceedings of 23rd IFHTSE Congress Advanced Thermal Processing IV. Savannah, GA2016, p. 10. P.D. Jablonski, J.A. Hawk, Thermodynamic and Kinetic Simulation and Experimental Results Homogenizing Advanced Alloys, in Conference Proceedings of 23rd IFHTSE Congress Advanced Thermal Processing IV. Savannah, GA2016, p. 10.
45.
Zurück zum Zitat M. Detrois, P.D. Jablonski, Trace Element Control in Binary Ni-25Cr and Ternary Ni-30C0-30Cr Master Alloy Castings, in ed. by M.J.M. Krane RMW, S. Rudoler, A.J. Elliott, A. Pate. Proceeding of the Liquid Metal Processing & Casting Conference (2017), pp. 75–84. M. Detrois, P.D. Jablonski, Trace Element Control in Binary Ni-25Cr and Ternary Ni-30C0-30Cr Master Alloy Castings, in ed. by M.J.M. Krane RMW, S. Rudoler, A.J. Elliott, A. Pate. Proceeding of the Liquid Metal Processing & Casting Conference (2017), pp. 75–84.
46.
Zurück zum Zitat International A. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. West Conshohocken, PA (2013). International A. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. West Conshohocken, PA (2013).
47.
Zurück zum Zitat International A. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques. West Conshohocken, PA (2018). International A. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques. West Conshohocken, PA (2018).
48.
Zurück zum Zitat ASTM E139-11, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials. (ASTM International, West Conshohocken, PA, 2018) ASTM E139-11, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials. (ASTM International, West Conshohocken, PA, 2018)
49.
Zurück zum Zitat F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–771 F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–771
50.
Zurück zum Zitat F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755 F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755
51.
Zurück zum Zitat M.-Y. Kim, S.-M. Hong, K.-H. Lee, W.-S. Jung, Y.-S. Lee, Y.-K. Lee et al., Mechanism for Z-Phase Formation in 11CrMoVNbN Martensitic Heat-Resistant Steel, Mater. Charact., 2017, 129, p 40–45 M.-Y. Kim, S.-M. Hong, K.-H. Lee, W.-S. Jung, Y.-S. Lee, Y.-K. Lee et al., Mechanism for Z-Phase Formation in 11CrMoVNbN Martensitic Heat-Resistant Steel, Mater. Charact., 2017, 129, p 40–45
52.
Zurück zum Zitat A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, Strain-Induced Z-Phase Formation in a 9% Cr-3% Co Martensitic Steel During Creep at Elevated Temperature, Mater. Sci. Eng. A, 2018, 724, p 29–36 A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, Strain-Induced Z-Phase Formation in a 9% Cr-3% Co Martensitic Steel During Creep at Elevated Temperature, Mater. Sci. Eng. A, 2018, 724, p 29–36
53.
Zurück zum Zitat High Temperature Characteristics of Stainless Steels: Designers’ Handbook Series No. 9004, American Iron and Steel Institute, 2011.: American Iron and Steel Institute; 2011. High Temperature Characteristics of Stainless Steels: Designers’ Handbook Series No. 9004, American Iron and Steel Institute, 2011.: American Iron and Steel Institute; 2011.
54.
Zurück zum Zitat F.T. Furillo, S. Purushothaman, and J.K. Tien, Understanding the Larson-Miller Parameter, Scr. Metall., 1977, 11, p 493–496 F.T. Furillo, S. Purushothaman, and J.K. Tien, Understanding the Larson-Miller Parameter, Scr. Metall., 1977, 11, p 493–496
55.
Zurück zum Zitat K.A. Rozman, M.A. Carl, M. Kapoor, Ö.N. Doğan, J.A. Hawk, Creep Performance of Transient Liquid Phase Bonded Haynes 230 Alloy. Mater. Sci. Eng. A 2019:138477. K.A. Rozman, M.A. Carl, M. Kapoor, Ö.N. Doğan, J.A. Hawk, Creep Performance of Transient Liquid Phase Bonded Haynes 230 Alloy. Mater. Sci. Eng. A 2019:138477.
56.
Zurück zum Zitat G. Pilloni, E. Quadrini, and S. Spigarelli, Interpretation of the Role of Forest Dislocations and Precipitates in High-Temperature Creep in a Nb-Stabilised Austenitic Stainless Steel, Mater. Sci. Eng. A, 2000, 279, p 52–60 G. Pilloni, E. Quadrini, and S. Spigarelli, Interpretation of the Role of Forest Dislocations and Precipitates in High-Temperature Creep in a Nb-Stabilised Austenitic Stainless Steel, Mater. Sci. Eng. A, 2000, 279, p 52–60
57.
Zurück zum Zitat D.-B. Park, S.-M. Hong, K.-H. Lee, M.-Y. Huh, J.-Y. Suh, S.-C. Lee et al., High-Temperature Creep Behavior and Microstructural Evolution of an 18Cr9Ni3CuNbVN Austenitic Stainless Steel, Mater. Charact., 2014, 93, p 52–61 D.-B. Park, S.-M. Hong, K.-H. Lee, M.-Y. Huh, J.-Y. Suh, S.-C. Lee et al., High-Temperature Creep Behavior and Microstructural Evolution of an 18Cr9Ni3CuNbVN Austenitic Stainless Steel, Mater. Charact., 2014, 93, p 52–61
58.
Zurück zum Zitat K.A. Rozman, M. Detrois, P. Jablonski, M. Gao, and J. Hawk, High Temperature Creep Behavior of Face Centered Cubic High Entropy Alloys. TMS2019, High Entropy Alloys VII: synthesis and mechanical properties (San Antonio, TX, USA, 2019) K.A. Rozman, M. Detrois, P. Jablonski, M. Gao, and J. Hawk, High Temperature Creep Behavior of Face Centered Cubic High Entropy Alloys. TMS2019, High Entropy Alloys VII: synthesis and mechanical properties (San Antonio, TX, USA, 2019)
59.
Zurück zum Zitat K.A. Rozman, M. Detrois, P. Jablonski, M. Gao, and J. Hawk, Creep Performance of Single Phase FCC High Entropy Alloys, in TMS 2019 Annual (San Antonio, TX, 2019). K.A. Rozman, M. Detrois, P. Jablonski, M. Gao, and J. Hawk, Creep Performance of Single Phase FCC High Entropy Alloys, in TMS 2019 Annual (San Antonio, TX, 2019).
60.
Zurück zum Zitat K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys, Acta Mater., 2013, 61, p 4887–4897 K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys, Acta Mater., 2013, 61, p 4887–4897
61.
Zurück zum Zitat M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski, Bulk Tracer Diffusion in CoCrFeNi and CoCrFeMnNi High Entropy Alloys, Acta Mater., 2018, 146, p 211–224 M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski, Bulk Tracer Diffusion in CoCrFeNi and CoCrFeMnNi High Entropy Alloys, Acta Mater., 2018, 146, p 211–224
62.
Zurück zum Zitat F.R.N. Nabarro, Deformation of Crystals by the Motion of Single Lonsin Report of a Conference on the Strength of Solids. Physical Society. Bristol, U.K., (1948), pp. 75–90. F.R.N. Nabarro, Deformation of Crystals by the Motion of Single Lonsin Report of a Conference on the Strength of Solids. Physical Society. Bristol, U.K., (1948), pp. 75–90.
63.
Zurück zum Zitat R.L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, J. Appl. Phys., 1963, 34, p 1679–1682 R.L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, J. Appl. Phys., 1963, 34, p 1679–1682
64.
Zurück zum Zitat C. Herring, Diffusional Viscosity of a Polycrystalline Solid, J. Appl. Phys., 1950, 21, p 437–445 C. Herring, Diffusional Viscosity of a Polycrystalline Solid, J. Appl. Phys., 1950, 21, p 437–445
65.
Zurück zum Zitat M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009) M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009)
66.
Zurück zum Zitat J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14 J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14
67.
Zurück zum Zitat E.C. Monkman and N.J. Grant, An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. ASTM., 1956, 56, p 593 E.C. Monkman and N.J. Grant, An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. ASTM., 1956, 56, p 593
68.
Zurück zum Zitat M. Ashby and B. Dyson, Creep Damage Mechanics and Micromechanisms, Fracture, 1984, 84, p 3–30 M. Ashby and B. Dyson, Creep Damage Mechanics and Micromechanisms, Fracture, 1984, 84, p 3–30
69.
Zurück zum Zitat A. Cocks and M. Ashby, Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses, Metal Sci., 1980, 14, p 395–402 A. Cocks and M. Ashby, Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses, Metal Sci., 1980, 14, p 395–402
70.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158 B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158
71.
Zurück zum Zitat ASM metals handbook. Metals Park, OH: American Society for Metals; 1985. ASM metals handbook. Metals Park, OH: American Society for Metals; 1985.
72.
Zurück zum Zitat K.A. Rozman, M. Detrois, P.D. Jablonski, J.A. Hawk. Mechanical Performance of Various INCONEL® 740/740H Alloy Compositions for Use in A-USC Castings, in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications (Springer, 2018). p. 611–627. K.A. Rozman, M. Detrois, P.D. Jablonski, J.A. Hawk. Mechanical Performance of Various INCONEL® 740/740H Alloy Compositions for Use in A-USC Castings, in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications (Springer, 2018). p. 611–627.
Metadaten
Titel
Long-Term Creep Behavior of a CoCrFeNiMn High-Entropy Alloy
verfasst von
K. A. Rozman
M. Detrois
T. Liu
M. C. Gao
P. D. Jablonski
J. A. Hawk
Publikationsdatum
17.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05103-2

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Engineering and Performance 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.