Skip to main content
Erschienen in: Strength of Materials 2/2022

11.06.2022

Long-Term Effect of Acidic Beverages on Dental Injectable Composite Resin: Microhardness, Surface Roughness, Elastic Modulus, and Flexural Strength Patterns

verfasst von: A. Degirmenci, B. U. Degirmenci, M. Salameh

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this study is to evaluate the effects of different acidic beverages on the surface roughness, microhardness, flexural strength, and elastic modulus of microhybrid, bulk-fill, and injectable composites and the correlations between them. Microhybrid, bulk-fill, and injectable composites were used in this study. One hundred and thirty-five disk-shaped samples were prepared for the microhardness test and the surface roughness measurements, and 675 rectangular prism-shaped samples were prepared for elastic modulus and flexural strength measurements. In each sample, the initial surface roughness, microhardness, flexural strength, and elastic modulus were measured and then randomly divided into three groups (n = 15) in preparation for the immersion procedure in coke, orange juice, and artificial saliva. Relevant measurements were repeated on the first day, first week, first month, and first year after the immersion procedure was performed with each beverage. Moreover, the effects of the beverage on surface morphology were evaluated by scanning electron microscopy at the relevant control times. A three-way analysis of variance was used to compare microhardness, surface roughness, flexural strength, and elastic modulus measurement values according to the material, beverage, and immersion cycle, and Tukey’s test was used for multiple comparisons. Spearman’s rho correlation coefficient was used to examine relationships between parameters. The significance level was p< 0.05. Statistically significant effects were found on the surface roughness values of the materials, beverages, immersion cycle times, as well as the interactions among these parameters (p< 0.001). The highest surface roughness value of 5.28 was obtained in the injectable composite group, which was exposed to a one-year coke immersion cycle. After the immersion cycle, a significant decreasing trend in the microhardness value was detected in all materials (p< 0.001). It was determined that the injectable composite had the highest flexural strength value (173.6 MPa). The lowest flexural strength value was determined to be in the microhybrid composite group (92.9 MPa) before the immersion procedure. Moreover, a significant decrease was observed in the flexural strength and elastic modulus values of all composite groups that were subjected to the immersion cycle with coke, while this change was minimal in artificial saliva. The injectable composite exposed to short- and long-term immersion cycles exhibited a flexural strength value above ISO 4049/2019 standards, which is promising for clinical use.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. A. Buzalaf, A. R. Hannas, and M. T. Kato, “Saliva and dental erosion,” J. Appl. Oral Sci., 20, 493–502 (2012).CrossRef M. A. Buzalaf, A. R. Hannas, and M. T. Kato, “Saliva and dental erosion,” J. Appl. Oral Sci., 20, 493–502 (2012).CrossRef
2.
Zurück zum Zitat A. C. Mafla, X. A. Ceron-Bastidas, M. E. Munoz-Ceballos, et al., “Prevalence and extrinsic risk factors for dental erosion in adolescents,” J. Clin. Pediatr. Dent., 41, 102–111 (2017).CrossRef A. C. Mafla, X. A. Ceron-Bastidas, M. E. Munoz-Ceballos, et al., “Prevalence and extrinsic risk factors for dental erosion in adolescents,” J. Clin. Pediatr. Dent., 41, 102–111 (2017).CrossRef
3.
Zurück zum Zitat A. S. Qutieshat, A. G. Mason, and R. G. Chadwick, “In vitro simulation of erosive challenges to human enamel using a novel artificial mouth,” Clin. Exp. Dent. Res., 4, 105–112 (2018).CrossRef A. S. Qutieshat, A. G. Mason, and R. G. Chadwick, “In vitro simulation of erosive challenges to human enamel using a novel artificial mouth,” Clin. Exp. Dent. Res., 4, 105–112 (2018).CrossRef
4.
Zurück zum Zitat Y. Li, F. Yu, L. Niu, et al., “Associations among bruxism, gastroesophageal reflux disease, and tooth wear,” J. Clin. Med., 7, 417 (2018).CrossRef Y. Li, F. Yu, L. Niu, et al., “Associations among bruxism, gastroesophageal reflux disease, and tooth wear,” J. Clin. Med., 7, 417 (2018).CrossRef
5.
Zurück zum Zitat D. Bartlett and S. O’Toole, “Tooth wear and aging,” Aust. Dent. J., 64, Suppl. 1, s59–s62 (2019).CrossRef D. Bartlett and S. O’Toole, “Tooth wear and aging,” Aust. Dent. J., 64, Suppl. 1, s59–s62 (2019).CrossRef
6.
Zurück zum Zitat T. K. Tedesco, A. F. B. Calvo, L. Yoshioka, et al., “Does acid challenge affect the properties and bond stability of restorative materials on primary teeth?,” J. Adhes. Dent., 20, 223–231 (2018). T. K. Tedesco, A. F. B. Calvo, L. Yoshioka, et al., “Does acid challenge affect the properties and bond stability of restorative materials on primary teeth?,” J. Adhes. Dent., 20, 223–231 (2018).
7.
Zurück zum Zitat M. G. Borges, C. J. Soares, T. S. Maia, et al., “Effect of acidic drinks on shade matching, surface topography, and mechanical properties of conventional and bulk-fill composite resins,” J. Prosthet. Dent., 121, 868.e–868.e8 (2019).CrossRef M. G. Borges, C. J. Soares, T. S. Maia, et al., “Effect of acidic drinks on shade matching, surface topography, and mechanical properties of conventional and bulk-fill composite resins,” J. Prosthet. Dent., 121, 868.e–868.e8 (2019).CrossRef
8.
Zurück zum Zitat J. Chesterman, A. Jowett, A. Gallacher, et al., “Bulk-fill resin-based composite restorative materials: a review,” Br. Dent. J., 222, 337–344 (2017).CrossRef J. Chesterman, A. Jowett, A. Gallacher, et al., “Bulk-fill resin-based composite restorative materials: a review,” Br. Dent. J., 222, 337–344 (2017).CrossRef
9.
Zurück zum Zitat L. Rosa de Lacerda, M. Bossardi, W. J. Silveira Mitterhofer, et al., “New generation bulk-fill resin composites: Effects on mechanical strength and fracture reliability,” J. Mech. Behav. Biomed. Mater., 96, 214–218 (2019).CrossRef L. Rosa de Lacerda, M. Bossardi, W. J. Silveira Mitterhofer, et al., “New generation bulk-fill resin composites: Effects on mechanical strength and fracture reliability,” J. Mech. Behav. Biomed. Mater., 96, 214–218 (2019).CrossRef
10.
Zurück zum Zitat A. Imai, T. Takamizawa, R. Sugimura, et al., “Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites,” J. Mech. Behav. Biomed. Mater., 89, 72–80 (2019).CrossRef A. Imai, T. Takamizawa, R. Sugimura, et al., “Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites,” J. Mech. Behav. Biomed. Mater., 89, 72–80 (2019).CrossRef
11.
Zurück zum Zitat J. Lin, M. Sun, Z. Zheng, et al., “Effects of rotating fatigue on the mechanical properties of microhybrid and nanofiller-containing composites,” Dent. Mater. J., 32, 476–483 (2013).CrossRef J. Lin, M. Sun, Z. Zheng, et al., “Effects of rotating fatigue on the mechanical properties of microhybrid and nanofiller-containing composites,” Dent. Mater. J., 32, 476–483 (2013).CrossRef
12.
Zurück zum Zitat S.-Y. Seon, I.-G. Yun, J.-E. Kim, et al., “Dental erosive effects of fluoride-containing tea beverages with low pH,” J. Korean. Acad. Oral Health, 42, 118–123 (2018).CrossRef S.-Y. Seon, I.-G. Yun, J.-E. Kim, et al., “Dental erosive effects of fluoride-containing tea beverages with low pH,” J. Korean. Acad. Oral Health, 42, 118–123 (2018).CrossRef
13.
Zurück zum Zitat A. U. Yap, S. H. Tan, S. S. Wee, et al., “Chemical degradation of composite restoratives,” J. Oral Rehabil., 28, 1015–1021 (2001).CrossRef A. U. Yap, S. H. Tan, S. S. Wee, et al., “Chemical degradation of composite restoratives,” J. Oral Rehabil., 28, 1015–1021 (2001).CrossRef
14.
Zurück zum Zitat C. Poggio, M. Viola, M. Mirando, et al., “Microhardness of different esthetic restorative materials: Evaluation and comparison after exposure to acidic drink,” Dent. Res. J. (Isfahan), 15, 166–172 (2018).CrossRef C. Poggio, M. Viola, M. Mirando, et al., “Microhardness of different esthetic restorative materials: Evaluation and comparison after exposure to acidic drink,” Dent. Res. J. (Isfahan), 15, 166–172 (2018).CrossRef
15.
Zurück zum Zitat A. Scribante, S. Gallo, S. Scarantino, et al., “Exposure of biomimetic composite materials to acidic challenges: Influence on flexural resistance and elastic modulus,” Biomimetics (Basel), 5, 56 (2020).CrossRef A. Scribante, S. Gallo, S. Scarantino, et al., “Exposure of biomimetic composite materials to acidic challenges: Influence on flexural resistance and elastic modulus,” Biomimetics (Basel), 5, 56 (2020).CrossRef
16.
Zurück zum Zitat M. R. Ayatollahi, M. Y. Yahya, A. Karimzadeh, et al., “Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites,” Mater. Sci. Eng. C, 54, 69–75 (2015).CrossRef M. R. Ayatollahi, M. Y. Yahya, A. Karimzadeh, et al., “Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites,” Mater. Sci. Eng. C, 54, 69–75 (2015).CrossRef
17.
Zurück zum Zitat A. Scribante, M. Bollardi, M. Chiesa, et al., “Flexural properties and elastic modulus of different esthetic restorative materials: Evaluation after exposure to acidic drink,” Biomed. Res. Int., 2019, 5109481 (2019).CrossRef A. Scribante, M. Bollardi, M. Chiesa, et al., “Flexural properties and elastic modulus of different esthetic restorative materials: Evaluation after exposure to acidic drink,” Biomed. Res. Int., 2019, 5109481 (2019).CrossRef
18.
Zurück zum Zitat S. Tanthanuch, B. Kukiattrakoon, O. P. K. Eiam, et al., “Surface changes of various bulk-fill resin-based composites after exposure to different food-simulating liquid and beverages,” J. Esthet. Dent., 30, 126–135 (2018).CrossRef S. Tanthanuch, B. Kukiattrakoon, O. P. K. Eiam, et al., “Surface changes of various bulk-fill resin-based composites after exposure to different food-simulating liquid and beverages,” J. Esthet. Dent., 30, 126–135 (2018).CrossRef
19.
Zurück zum Zitat I. M. Hamouda, “Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials,” J. Esthet. Dent., 23, 315–322 (2011).CrossRef I. M. Hamouda, “Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials,” J. Esthet. Dent., 23, 315–322 (2011).CrossRef
20.
Zurück zum Zitat P. S. Reddy, K. L. Tejaswi, S. Shetty, et al., “Effects of commonly consumed beverages on surface roughness and color stability of the nano, microhybrid and hybrid composite resins: an in vitro study,” J. Contemp. Dent., 14, 718–723 (2013).CrossRef P. S. Reddy, K. L. Tejaswi, S. Shetty, et al., “Effects of commonly consumed beverages on surface roughness and color stability of the nano, microhybrid and hybrid composite resins: an in vitro study,” J. Contemp. Dent., 14, 718–723 (2013).CrossRef
21.
Zurück zum Zitat L. Shalan, “Effect of acidic and energy drinks on surface roughness of three types of bulk fill composite materials,” J. Baghdad Coll. Dent., 28, 8–14 (2016).CrossRef L. Shalan, “Effect of acidic and energy drinks on surface roughness of three types of bulk fill composite materials,” J. Baghdad Coll. Dent., 28, 8–14 (2016).CrossRef
22.
Zurück zum Zitat G. Elwardani, A. A. Sharaf, and A. Mahmoud, “Evaluation of colour change and surface roughness of two resin-based composites when exposed to beverages commonly used by children: an in-vitro study,” Eur. Arch. Paediatr. Dent., 20, 267–276 (2019).CrossRef G. Elwardani, A. A. Sharaf, and A. Mahmoud, “Evaluation of colour change and surface roughness of two resin-based composites when exposed to beverages commonly used by children: an in-vitro study,” Eur. Arch. Paediatr. Dent., 20, 267–276 (2019).CrossRef
23.
Zurück zum Zitat C. M. Meenakshi and K. Sirisha, “Surface quality and color stability of posterior composites in acidic beverages,” J. Conserv. Dent., 23, 57–61 (2020).CrossRef C. M. Meenakshi and K. Sirisha, “Surface quality and color stability of posterior composites in acidic beverages,” J. Conserv. Dent., 23, 57–61 (2020).CrossRef
24.
Zurück zum Zitat E. A. Munchow, M. B. Correa, F. A. Ogliari, et al., “Correlation between surface roughness and microhardness of experimental composites with varying filler concentration,” J. Contemp. Dent., 13, 299–304 (2012).CrossRef E. A. Munchow, M. B. Correa, F. A. Ogliari, et al., “Correlation between surface roughness and microhardness of experimental composites with varying filler concentration,” J. Contemp. Dent., 13, 299–304 (2012).CrossRef
25.
Zurück zum Zitat M. El Gezawi, D. Kaisarly, H. Al-Saleh, et al., “Degradation potential of bulk versus incrementally applied and indirect composites: Color, microhardness, and surface deterioration,” Oper. Dent., 41, e195–e208 (2016).CrossRef M. El Gezawi, D. Kaisarly, H. Al-Saleh, et al., “Degradation potential of bulk versus incrementally applied and indirect composites: Color, microhardness, and surface deterioration,” Oper. Dent., 41, e195–e208 (2016).CrossRef
26.
Zurück zum Zitat M. A. B. Da Silva, R. P. Vitti, M. A. C. Sinhoreti, et al., “Effect of alcoholic beverages on surface roughness and microhardness of dental composites,” Dent. Mater. J., 35, 621–626 (2016).CrossRef M. A. B. Da Silva, R. P. Vitti, M. A. C. Sinhoreti, et al., “Effect of alcoholic beverages on surface roughness and microhardness of dental composites,” Dent. Mater. J., 35, 621–626 (2016).CrossRef
27.
Zurück zum Zitat D. Tantbirojn, C. S. Pfeifer, R. R. Braga, et al., “Do low-shrink composites reduce polymerization shrinkage effects?,” J. Dent. Res., 90, 596–601 (2011).CrossRef D. Tantbirojn, C. S. Pfeifer, R. R. Braga, et al., “Do low-shrink composites reduce polymerization shrinkage effects?,” J. Dent. Res., 90, 596–601 (2011).CrossRef
28.
Zurück zum Zitat A. Nemati Giv, S. Rastegar, and M. Ozcan, “Influence of nanoclays on water uptake and flexural strength of glass-polyester composites,” J. Appl. Biomater. Funct., 18, 2280800020930180 (2020). A. Nemati Giv, S. Rastegar, and M. Ozcan, “Influence of nanoclays on water uptake and flexural strength of glass-polyester composites,” J. Appl. Biomater. Funct., 18, 2280800020930180 (2020).
29.
Zurück zum Zitat E. Mohammadi, L. Pishevar, and P. Mirzakouchaki Boroujeni, “Effect of food simulating liquids on the flexural strength of a methacrylate and silorane-based composite,” PLoS One, 12, e0188829 (2017).CrossRef E. Mohammadi, L. Pishevar, and P. Mirzakouchaki Boroujeni, “Effect of food simulating liquids on the flexural strength of a methacrylate and silorane-based composite,” PLoS One, 12, e0188829 (2017).CrossRef
30.
Zurück zum Zitat ISO 4049:2019. Dentistry – Polymer-Based Restorative Materials. ISO 4049:2019. Dentistry – Polymer-Based Restorative Materials.
Metadaten
Titel
Long-Term Effect of Acidic Beverages on Dental Injectable Composite Resin: Microhardness, Surface Roughness, Elastic Modulus, and Flexural Strength Patterns
verfasst von
A. Degirmenci
B. U. Degirmenci
M. Salameh
Publikationsdatum
11.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00409-z

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.