Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

29.09.2020

Low-Complexity Near-Optimal Iterative Signal Detection Based on MSD-CG Method for Uplink Massive MIMO Systems

verfasst von: Zaid Albataineh

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Massive multiple-input multiple-output (MIMO) wireless system is increasingly becoming a vital factor in fifth-generation (5G) communication systems. It is attracting considerable interest due to improve range, spectral efficiency, and coverage as compared to the conventional MIMO systems. In massive MIMO systems, the maximum likelihood detector achieve the optimum performance but it has exponential complexity for realistic antenna configurations systems, Moreover, Linear detectors commonly suffer from a matrix inversion which is not hardware-friendly. There is an increase in the computational complexity associated with the unique benefits of the massive MIMO systems. The system might be classified as an ill-conditioned problem and hence, the signal cannot be detected. To reduce the data detection complexity, we investigate a linear detector based on the multiple search direction conjugate gradient (MSD-CG) in the massive MIMO uplink systems. Several theoretical iterative techniques that can be used to balance complexity and performance for massive MIMO detection have been proposed in the literature. These methods whose convergence rate for common applications is slow where there is a decrease in the base station to user antenna ratio. In this paper, the performance of the CG method has been advanced by a projection method that necessitates a search direction in each sub-domain instead of making all search directions conjugate to each other. In this regard, our results show that the proposed algorithm with realistic antenna configurations is superior to the existing methods in terms of computational complexity for large-scale MIMO systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ngo, H., Larsson, E., & Marzetta, T. (2012). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449. Ngo, H., Larsson, E., & Marzetta, T. (2012). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.
2.
Zurück zum Zitat Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef
3.
Zurück zum Zitat Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challengeswith very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challengeswith very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
4.
Zurück zum Zitat Dai, L., Wang, Z., & Yang, Z. (2013). Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems. IEEE Journal on Selected Areas in Communications, 31(2), 251–263.CrossRef Dai, L., Wang, Z., & Yang, Z. (2013). Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems. IEEE Journal on Selected Areas in Communications, 31(2), 251–263.CrossRef
5.
Zurück zum Zitat Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2010). Random-restartreactive tabu search algorithm for detection in large-MIMO systems. IEEE Communications Letters, 14(12), 1107–1109.CrossRef Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2010). Random-restartreactive tabu search algorithm for detection in large-MIMO systems. IEEE Communications Letters, 14(12), 1107–1109.CrossRef
6.
Zurück zum Zitat Golub, G. H., & Van Loan, C. F. (2012). Matrix computations. Baltimore: JHU Press.MATH Golub, G. H., & Van Loan, C. F. (2012). Matrix computations. Baltimore: JHU Press.MATH
7.
Zurück zum Zitat Barbero, L. G., & Thompson, J. S. (2008). Fixing the complexity of the spheredecoder for MIMO detection. IEEE Transactions on Wireless Communications, 7(6), 2131–2142.CrossRef Barbero, L. G., & Thompson, J. S. (2008). Fixing the complexity of the spheredecoder for MIMO detection. IEEE Transactions on Wireless Communications, 7(6), 2131–2142.CrossRef
8.
Zurück zum Zitat Wu, M., Yin, B., Wang, G., Dick, C., Cavallaro, J. R., & Studer, C. (2014). Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations. IEEE Journal of Selected Topics Signal Processing, 8(5), 916–929.CrossRef Wu, M., Yin, B., Wang, G., Dick, C., Cavallaro, J. R., & Studer, C. (2014). Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations. IEEE Journal of Selected Topics Signal Processing, 8(5), 916–929.CrossRef
9.
Zurück zum Zitat Prabhu, H., Rodrigues, J., Edfors, O., & Rusek, F. (2013). Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In Proceedings of IEEE wireless communications network conference (WCNC) (pp. 2710–2715). Prabhu, H., Rodrigues, J., Edfors, O., & Rusek, F. (2013). Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In Proceedings of IEEE wireless communications network conference (WCNC) (pp. 2710–2715).
10.
Zurück zum Zitat Yin, B., Wu, M., Cavallaro, J.R., & Studer, C. (2014). Conjugate gradient-basedsoft-output detection and precoding in massive MIMO systems. arXivpreprint:1404.0424v1. Yin, B., Wu, M., Cavallaro, J.R., & Studer, C. (2014). Conjugate gradient-basedsoft-output detection and precoding in massive MIMO systems. arXivpreprint:1404.0424v1.
11.
Zurück zum Zitat Gao, X., et al. (2015). Matrix inversion-less signal detection using SOR method for uplink Large-Scale MIMO systems. arXiv:1507.04588. Gao, X., et al. (2015). Matrix inversion-less signal detection using SOR method for uplink Large-Scale MIMO systems. arXiv:1507.04588.
12.
Zurück zum Zitat Yin, B., Wu, M., Studer, C., Cavallaro, J. R., & Dick, C. (2013). Implementationtrade-offs for linear detection in large-scale MIMO systems. In Proceeding of IEEE ICASSP (pp. 2679–2683). Yin, B., Wu, M., Studer, C., Cavallaro, J. R., & Dick, C. (2013). Implementationtrade-offs for linear detection in large-scale MIMO systems. In Proceeding of IEEE ICASSP (pp. 2679–2683).
13.
Zurück zum Zitat Gao, X., Dai, L., Ma, Y., & Wang, Z. (2014). Low-complexity near-optimal signal detection for uplink large-scale MIMO systems. Electronics Letters, 50(18), 1326–1328.CrossRef Gao, X., Dai, L., Ma, Y., & Wang, Z. (2014). Low-complexity near-optimal signal detection for uplink large-scale MIMO systems. Electronics Letters, 50(18), 1326–1328.CrossRef
14.
Zurück zum Zitat Dai, L., et al. (2015).“Low-Complexity Soft-Output Signal Detection Based on Gauss” Seidel method for uplink multiuser large-scale MIMO systems. IEEE Transactions on Vehicular Technology, 64(10). Dai, L., et al. (2015).“Low-Complexity Soft-Output Signal Detection Based on Gauss” Seidel method for uplink multiuser large-scale MIMO systems. IEEE Transactions on Vehicular Technology, 64(10).
15.
Zurück zum Zitat Hentila, L., Kyosti, P., Kaske, M., Narandzic, M., & Alatossava, M. (2007). Matlab implementation of the WINNER phase II channel model ver 1.1. Hentila, L., Kyosti, P., Kaske, M., Narandzic, M., & Alatossava, M. (2007). Matlab implementation of the WINNER phase II channel model ver 1.1.
16.
Zurück zum Zitat Hu, Y., Wang, Z., Gaol, X., & Ning, J. (2014) Low-complexity signal detectionusing CG method for uplink large-scale MIMO systems. In Proceedings of IEEE international communication conference systems (ICCS) (pp. 477–481). Hu, Y., Wang, Z., Gaol, X., & Ning, J. (2014) Low-complexity signal detectionusing CG method for uplink large-scale MIMO systems. In Proceedings of IEEE international communication conference systems (ICCS) (pp. 477–481).
17.
Zurück zum Zitat Wuet, M., et al. (2016). High-throughput data detection for MassiveMU-MIMO-OFDM using coordinate descent. IEEE Transactions on Circuit and System I, 63(12). Wuet, M., et al. (2016). High-throughput data detection for MassiveMU-MIMO-OFDM using coordinate descent. IEEE Transactions on Circuit and System I, 63(12).
18.
Zurück zum Zitat Gu, T., Liu, X., Mo, Z., & Chi, X. (2004). Multiple search direction conjugate gradient method I: Methods and their propositions. International Journal of Computer Mathematics, 81(9), 1133–1143.MathSciNetCrossRef Gu, T., Liu, X., Mo, Z., & Chi, X. (2004). Multiple search direction conjugate gradient method I: Methods and their propositions. International Journal of Computer Mathematics, 81(9), 1133–1143.MathSciNetCrossRef
19.
Zurück zum Zitat Demmel, J., Grigori, L., Hoemmen, M., & Langou, J. (2012). Communication-avoiding parallel and sequentialqr factorizations. SIAM Journal on Scientific Computing, 34, 206–239.MathSciNetCrossRef Demmel, J., Grigori, L., Hoemmen, M., & Langou, J. (2012). Communication-avoiding parallel and sequentialqr factorizations. SIAM Journal on Scientific Computing, 34, 206–239.MathSciNetCrossRef
20.
Zurück zum Zitat Albataineh, Z. (2017). Robust blind channel estimation algorithm for linear stbc systemsusing fourth order cumulant matrices. Telecommunication Systems. Albataineh, Z. (2017). Robust blind channel estimation algorithm for linear stbc systemsusing fourth order cumulant matrices. Telecommunication Systems.
21.
Zurück zum Zitat Albataineh, Z., & Salem, F. M. (2017). Adaptive blind cdma receivers based onicafilteredstructures. Circuits, Systems, and Signal Processing, 36(8), 3320–3348.CrossRef Albataineh, Z., & Salem, F. M. (2017). Adaptive blind cdma receivers based onicafilteredstructures. Circuits, Systems, and Signal Processing, 36(8), 3320–3348.CrossRef
22.
Zurück zum Zitat Albataineh, Z., & Salem, F. (2015). Robust blind multiuser detection algorithmusing fourth-order cumulant matrices. Circuits, Systems, and Signal Processing, 34(8), 2577–2595.MathSciNetCrossRef Albataineh, Z., & Salem, F. (2015). Robust blind multiuser detection algorithmusing fourth-order cumulant matrices. Circuits, Systems, and Signal Processing, 34(8), 2577–2595.MathSciNetCrossRef
23.
Zurück zum Zitat Prasad, R. (2004). OFDM for Wireless Communications Systems. MA: Norwood. Prasad, R. (2004). OFDM for Wireless Communications Systems. MA: Norwood.
24.
Zurück zum Zitat Gesbert, D., Shafi, M., Shiu, D., Smith, P. J., & Naguib, A. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.CrossRef Gesbert, D., Shafi, M., Shiu, D., Smith, P. J., & Naguib, A. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.CrossRef
25.
Zurück zum Zitat Paulraj, A., Nabar, R., & Gore, D. (2008). Introduction to space-time wireless communications. Cambridge: Cambridge Univ. Press. Paulraj, A., Nabar, R., & Gore, D. (2008). Introduction to space-time wireless communications. Cambridge: Cambridge Univ. Press.
26.
Zurück zum Zitat Seethaler, D., Matz, G., & Hlawatsch, F. (2004). An efficient MMSE-based demodulator for MIMO bit-interleaved coded modulation. In Proceedings of Global Telecommunications conference (GLOBECOM) (Vol. 4. pp. 2455–2459). Seethaler, D., Matz, G., & Hlawatsch, F. (2004). An efficient MMSE-based demodulator for MIMO bit-interleaved coded modulation. In Proceedings of Global Telecommunications conference (GLOBECOM) (Vol. 4. pp. 2455–2459).
29.
Zurück zum Zitat Yang, X., Jin, S., & Wen, C. (2019). Symbol detection of phase noise-impaired massive MIMO using approximate bayesian inference. IEEE Signal Processing Letters, 26(4), 607–611.CrossRef Yang, X., Jin, S., & Wen, C. (2019). Symbol detection of phase noise-impaired massive MIMO using approximate bayesian inference. IEEE Signal Processing Letters, 26(4), 607–611.CrossRef
30.
Zurück zum Zitat Elgabli, A., Elghariani, A., Aggarwal, V., & Bell, M. R. (2019). A low-complexity detection algorithm for uplink massive MIMO systems based on alternating minimization. IEEE Wireless Communications Letters, 8(3), 917–920.CrossRef Elgabli, A., Elghariani, A., Aggarwal, V., & Bell, M. R. (2019). A low-complexity detection algorithm for uplink massive MIMO systems based on alternating minimization. IEEE Wireless Communications Letters, 8(3), 917–920.CrossRef
31.
Zurück zum Zitat Jiang, F., Li, C., Gong, Z., & Su, R. (2018). Extrinsic information analysis of a new iterative method using the stair matrix for massive MIMO uplink signal detection. IEEE Wireless Communications Letters, 7(6), 1022–1025.CrossRef Jiang, F., Li, C., Gong, Z., & Su, R. (2018). Extrinsic information analysis of a new iterative method using the stair matrix for massive MIMO uplink signal detection. IEEE Wireless Communications Letters, 7(6), 1022–1025.CrossRef
32.
Zurück zum Zitat Jiang, F., Li, C., & Gong, Z. (2018). Low complexity and fast processing algorithms for V2I massive MIMO uplink detection. IEEE Transactions on Vehicular Technology, 67(6), 5054–5068.CrossRef Jiang, F., Li, C., & Gong, Z. (2018). Low complexity and fast processing algorithms for V2I massive MIMO uplink detection. IEEE Transactions on Vehicular Technology, 67(6), 5054–5068.CrossRef
33.
Zurück zum Zitat Albataineh, Z. (2019). Iterative signal detection based on MSD-CG method for uplink massive MIMO systems. In 2019 16th International multi-conference on systems, signals and devices (SSD), Istanbul, Turkey (pp. 539–544). Albataineh, Z. (2019). Iterative signal detection based on MSD-CG method for uplink massive MIMO systems. In 2019 16th International multi-conference on systems, signals and devices (SSD), Istanbul, Turkey (pp. 539–544).
34.
Zurück zum Zitat Zhao, S., Shen, B., & Hua, Q. (2018). A comparative study of low-complexity MMSE signal detection for massive MIMO systems. KSII Transactions on Internet and Information Systems., 12, 1504–1526. Zhao, S., Shen, B., & Hua, Q. (2018). A comparative study of low-complexity MMSE signal detection for massive MIMO systems. KSII Transactions on Internet and Information Systems., 12, 1504–1526.
Metadaten
Titel
Low-Complexity Near-Optimal Iterative Signal Detection Based on MSD-CG Method for Uplink Massive MIMO Systems
verfasst von
Zaid Albataineh
Publikationsdatum
29.09.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07810-4

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt