Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.01.2021 | Ausgabe 6/2020

Journal of Electronic Testing 6/2020

Low-Cost Error Detection in Deep Neural Network Accelerators with Linear Algorithmic Checksums

Zeitschrift:
Journal of Electronic Testing > Ausgabe 6/2020
Autoren:
Elbruz Ozen, Alex Orailoglu
Wichtige Hinweise
Responsible Editor: J. C.-M. Li

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The widespread adoption of deep neural networks in safety-critical systems necessitates the examination of the safety issues raised by hardware errors. The appropriateness of the concern is herein confirmed by evidencing the possible catastrophic impact of hardware bit errors on DNN accuracy. The consequent interest in fault tolerance methods that are comprehensive yet low-cost to match the margin requirements of consumer deep learning applications can be met through a rigorous exploration of the mathematical properties of the deep neural network computations. Our novel technique, Sanity-Check, allows error detection in fully-connected and convolutional layers through the use of linear algorithmic checksums. The purely software-based implementation of Sanity-Check facilitates the widespread adoption of our technique on a variety of off-the-shelf execution platforms while requiring no hardware modification. We further propose a dedicated hardware unit that seamlessly integrates with modern deep learning accelerators and eliminates the performance overhead of the software-based implementation at the cost of a negligible area and power budget in a DNN accelerator. Sanity-Check delivers perfect critical error coverage in our error injection experiments and offers a promising alternative for low-cost error detection in safety-critical deep neural network applications.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2020

Journal of Electronic Testing 6/2020 Zur Ausgabe

EditorialNotes

Editorial