Skip to main content
Erschienen in:

18.02.2024

Low-Dose CT Denoising Algorithm Based on Image Cartoon Texture Decomposition

verfasst von: Hao Chen, Yi Liu, Pengcheng Zhang, Jiaqi Kang, Zhiyuan Li, Weiting Cheng, Zhiguo Gui

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-dose computed tomography (LDCT) technology has attracted more and more attention in the field of medical imaging because of the reduction of radiation damage to the human body. However, the large amount of quantum noise contained in LDCT images can affect physicians’ judgment. To solve the problem of large amounts of quantum noise and artifacts in LDCT images, a convolutional neural network denoising model based on cartoon texture decomposition of images (CATCNN) is developed in this study based on deep learning. The model first uses a U-Net-based image decomposition sub-network to decompose LDCT images into cartoon images and texture images. The texture images are then denoised using a texture denoising sub-network based on edge protection and Efficient Channel Attention, finally, cartoon images are summed with the denoised texture images to obtain images with improved quality. Our experimental results demonstrate that the proposed model outperforms existing technologies, achieving a peak signal-to-noise ratio value of 33.4666 dB and a structural similarity value of 0.9193. The visual and quantitative evaluation results suggest that the CATCNN model effectively improves the quality of LDCT images.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
3.
Zurück zum Zitat A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (IEEE, 2005), pp. 60–65 A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (IEEE, 2005), pp. 60–65
5.
Zurück zum Zitat Q. Chen, J. Xu, V. Koltun, Fast image processing with fully-convolutional networks, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2497–2506 Q. Chen, J. Xu, V. Koltun, Fast image processing with fully-convolutional networks, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2497–2506
8.
Zurück zum Zitat Q. Fan, J. Yang, G. Hua, B. Chen, D. Wipf, A generic deep architecture for single image reflection removal and image smoothing, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 3238–3247 Q. Fan, J. Yang, G. Hua, B. Chen, D. Wipf, A generic deep architecture for single image reflection removal and image smoothing, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 3238–3247
11.
Zurück zum Zitat W.-L. Hsu, D.L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat. Res. 179, 361–382 (2013). https://doi.org/10.1667/rr2892.1CrossRef W.-L. Hsu, D.L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat. Res. 179, 361–382 (2013). https://​doi.​org/​10.​1667/​rr2892.​1CrossRef
12.
Zurück zum Zitat J.M. Joyce, Kullback-leibler divergence, in International Encyclopedia of Statistical Science (Springer, 2011), pp. 720–722 J.M. Joyce, Kullback-leibler divergence, in International Encyclopedia of Statistical Science (Springer, 2011), pp. 720–722
14.
Zurück zum Zitat T. Liang, Y. Jin, Y. Li, T. Wang, Edcnn: edge enhancement-based densely connected network with compound loss for low-dose CT denoising, in 2020 15th IEEE International Conference on Signal Processing (ICSP) (IEEE, 2020), pp. 193–198. T. Liang, Y. Jin, Y. Li, T. Wang, Edcnn: edge enhancement-based densely connected network with compound loss for low-dose CT denoising, in 2020 15th IEEE International Conference on Signal Processing (ICSP) (IEEE, 2020), pp. 193–198.
16.
Zurück zum Zitat K. Lu, S. You, N. Barnes, Deep texture and structure aware filtering network for image smoothing, in Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 217–233 K. Lu, S. You, N. Barnes, Deep texture and structure aware filtering network for image smoothing, in Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 217–233
17.
Zurück zum Zitat C.H. McCollough, A.C. Bartley, R.E. Carter, B. Chen, T.A. Drees, P. Edwards, D.R. Holmes III., A.E. Huang, F. Khan, S. Leng, Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge. Med. Phys. 44, e339–e352 (2017). https://doi.org/10.1002/mp.12345CrossRef C.H. McCollough, A.C. Bartley, R.E. Carter, B. Chen, T.A. Drees, P. Edwards, D.R. Holmes III., A.E. Huang, F. Khan, S. Leng, Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge. Med. Phys. 44, e339–e352 (2017). https://​doi.​org/​10.​1002/​mp.​12345CrossRef
25.
Zurück zum Zitat Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 11534–11542 Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 11534–11542
29.
Zurück zum Zitat L. Xu, J. Ren, Q. Yan, R. Liao, J. Jia, Deep edge-aware filters, in International Conference on Machine Learning (PMLR, 2015), pp. 1669–1678 L. Xu, J. Ren, Q. Yan, R. Liao, J. Jia, Deep edge-aware filters, in International Conference on Machine Learning (PMLR, 2015), pp. 1669–1678
33.
Zurück zum Zitat S. Yao, W. Lin, E. Ong, Z. Lu, Contrast signal-to-noise ratio for image quality assessment, in IEEE International Conference on Image Processing 2005 (IEEE, 2005), pp. I-397 S. Yao, W. Lin, E. Ong, Z. Lu, Contrast signal-to-noise ratio for image quality assessment, in IEEE International Conference on Image Processing 2005 (IEEE, 2005), pp. I-397
Metadaten
Titel
Low-Dose CT Denoising Algorithm Based on Image Cartoon Texture Decomposition
verfasst von
Hao Chen
Yi Liu
Pengcheng Zhang
Jiaqi Kang
Zhiyuan Li
Weiting Cheng
Zhiguo Gui
Publikationsdatum
18.02.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 5/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02594-x