Skip to main content
Erschienen in: Annals of Telecommunications 1-2/2020

03.08.2019

Low-latency and high-throughput software turbo decoders on multi-core architectures

verfasst von: Bertrand Le Gal, Christophe Jego

Erschienen in: Annals of Telecommunications | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last few years, with the advent of a software-defined radio (SDR), the processor cores were stated to be an efficient solution to execute the physical layer components. Indeed, multi-core architectures provide both high-processing performance and flexibility, such that they are used in current base station systems instead of dedicated FPGA or ASIC devices. Currently, an extension of the SDR concept is running. Indeed, cloud platforms become attractive for the virtualization of radio access network functions. Actually, they improve the efficiency of the computational resource usage, and thus the global power efficiency. However, the implementation of a physical layer on a Cloud-RAN platform as discussed by Wubben and Paul (2016); Checko et al. (JAMA 17(1):405–426, 2015); Inc (2015); and Wubben et al. (JAMA 31(6):35–44, 2014) or FlexRAN platform as discussed by Wilson (2018); Foukas et al. (2017); Corp. (2017); Foukas et al. (2016) is a challenging task according to the drastic latency and throughput constraints as discussed by Yu et al. (2017) and Parvez (2018). Processing latencies from 10 μ s up to hundred of μ s are required for future digital communication systems. In this context, most of works about software implementations of ECC applications is based on massive frame parallelism to reach high throughput. Nonetheless, they produce unacceptable decoding latencies. In this paper, a new turbo decoder parallelization approach is proposed for x86 multi-core processors. It provides both: high-throughput and low-latency performances. In comparison with all CPU- and GPU-related works, the following results are observed: shorter processing latency, higher throughput, and lower energy consumption. Regarding to the best state-of-the-art x86 software implementations, 1.5 × to 2 × throughput improvements are reached, whereas a latency reduction of 50 × and an energy reduction of 2 × are observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The 4th streaming SIMD extensions introduced by INTEL in 2006.
 
2
The 2nd advanced vector extensions deployed by INTEL in its processors since 2013.
 
3
The clang compiler is the only compiler available on the server platform (P3). As we cannot be the administrator of the workstation, it is not possible for us to update the old fedora distribution. In order to have a fair comparison between the platforms, the clang 4 compiler was also used for P1 and P2 platforms.
 
4
For small numbers of iterations, it may be necessary to correct the extrapolated values with the information provided in Table 3.
 
5
The theoretical limit is 6 instructions per cycle. In practice, it is necessary for these instructions to use different functional units so it is much lower.
 
Literatur
1.
Zurück zum Zitat Wubben D, Paul H (2016) Analysis of virtualized turbo-decoder implementation for Cloud-RAN systems. In: Proceeding of the 9th international symposium on turbo codes & iterative information processing, pp 385–389 Wubben D, Paul H (2016) Analysis of virtualized turbo-decoder implementation for Cloud-RAN systems. In: Proceeding of the 9th international symposium on turbo codes & iterative information processing, pp 385–389
2.
Zurück zum Zitat Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015) Cloud RAN for mobile networks - a technology overview. IEEE Commun Surv Tutor 17(1):405–426. FirstquarterCrossRef Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015) Cloud RAN for mobile networks - a technology overview. IEEE Commun Surv Tutor 17(1):405–426. FirstquarterCrossRef
3.
Zurück zum Zitat Inc F (2015) The benefits of Cloud-RAN architecture in mobile network expansion. Fujitsu Network Communications Inc., Tech. Rep. Inc F (2015) The benefits of Cloud-RAN architecture in mobile network expansion. Fujitsu Network Communications Inc., Tech. Rep.
4.
Zurück zum Zitat Wubben D, Rost P, Bartelt JS, Lalam M, Savin V, Gorgoglione M, Dekorsy A, Fettweis G (2014) Benefits and impact of cloud computing on 5G signal processing: flexible centralization through Cloud-RAN. IEEE Signal Process Mag 31(6):35–44CrossRef Wubben D, Rost P, Bartelt JS, Lalam M, Savin V, Gorgoglione M, Dekorsy A, Fettweis G (2014) Benefits and impact of cloud computing on 5G signal processing: flexible centralization through Cloud-RAN. IEEE Signal Process Mag 31(6):35–44CrossRef
5.
Zurück zum Zitat Wilson R (2018) Intel flexran reference designs deployed in 5g infrastructure Wilson R (2018) Intel flexran reference designs deployed in 5g infrastructure
6.
Zurück zum Zitat Foukas X, Nikaein N, Kassem MM, Marina MK, Kontovasilis K (2017) Demo: Flexran – a software-defined ran platform. In: Proceedings of the 23rd annual international conference on mobile computing and networking conference (MOBICOM), pp 465–467 Foukas X, Nikaein N, Kassem MM, Marina MK, Kontovasilis K (2017) Demo: Flexran – a software-defined ran platform. In: Proceedings of the 23rd annual international conference on mobile computing and networking conference (MOBICOM), pp 465–467
7.
Zurück zum Zitat I. corp., INTEL 5G Vision (Network, Cloud Client) (2017) I. corp., INTEL 5G Vision (Network, Cloud Client) (2017)
8.
Zurück zum Zitat Foukas X, Nikaein N, Kassem MM, Marina MK, Kontovasilis K (2016) Flexran: a flexible and programmable platform for software-defined radio access networks. In: Proceedings of the 12th international on conference on emerging networking experiments and technologies (CoNEXT), pp 427–441 Foukas X, Nikaein N, Kassem MM, Marina MK, Kontovasilis K (2016) Flexran: a flexible and programmable platform for software-defined radio access networks. In: Proceedings of the 12th international on conference on emerging networking experiments and technologies (CoNEXT), pp 427–441
9.
Zurück zum Zitat Yu H, Lee H, Jeon H (2017) What is 5G? Emerging 5G mobile services and network requirements. Sustainability, 9 Yu H, Lee H, Jeon H (2017) What is 5G? Emerging 5G mobile services and network requirements. Sustainability, 9
10.
Zurück zum Zitat Parvez I, Rahmati A, Guvenc I, Sarwat AI, Dai H (2018) A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, arXiv:1708.02562v2 Parvez I, Rahmati A, Guvenc I, Sarwat AI, Dai H (2018) A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, arXiv:1708.​02562v2
11.
Zurück zum Zitat Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. In Proceedings of the international conference on communications (ICC). Geneva, pp 1064–1070 Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. In Proceedings of the international conference on communications (ICC). Geneva, pp 1064–1070
13.
Zurück zum Zitat Brejza MF, Li L, Maunder RG, Al-Hashimi BM, Berrou C, Hanzo L (2015) 20 years of turbo coding and energy-aware design guidelines for energy-constrained wireless applications. IEEE Commun Surv Tutor 18(1):8–28CrossRef Brejza MF, Li L, Maunder RG, Al-Hashimi BM, Berrou C, Hanzo L (2015) 20 years of turbo coding and energy-aware design guidelines for energy-constrained wireless applications. IEEE Commun Surv Tutor 18(1):8–28CrossRef
14.
Zurück zum Zitat Belfanti S, Roth C, Gautschi M, Benkeser C, Huang Q (2013) A 1Gbps LTE-advanced turbo-decoder ASIC in 65nm CMOS. In: Proceedings of the symposium on VLSI circuits (VLSIC), pp 284–285 Belfanti S, Roth C, Gautschi M, Benkeser C, Huang Q (2013) A 1Gbps LTE-advanced turbo-decoder ASIC in 65nm CMOS. In: Proceedings of the symposium on VLSI circuits (VLSIC), pp 284–285
15.
Zurück zum Zitat Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8–17CrossRef Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8–17CrossRef
16.
Zurück zum Zitat Sun Y, Cavallaro JR (2011) Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integration VLSI J 44(4):305–315CrossRef Sun Y, Cavallaro JR (2011) Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integration VLSI J 44(4):305–315CrossRef
17.
Zurück zum Zitat Wu M, Sun Y, Cavallaro JR (2010) Implementation of a 3GPP LTE turbo decoder accelerator on GPU. In: Proceedings of the IEEE workshop on signal processing systems (SIPS), pp 192–197 Wu M, Sun Y, Cavallaro JR (2010) Implementation of a 3GPP LTE turbo decoder accelerator on GPU. In: Proceedings of the IEEE workshop on signal processing systems (SIPS), pp 192–197
18.
Zurück zum Zitat May M, Ilnseher T, Wehn N, Raab W (2010) A 150Mbit/s 3GPP LTE turbo code decoder. In: Proceedings of the design, automation & test in europe conference & exhibition (DATE), pp 1420–1425 May M, Ilnseher T, Wehn N, Raab W (2010) A 150Mbit/s 3GPP LTE turbo code decoder. In: Proceedings of the design, automation & test in europe conference & exhibition (DATE), pp 1420–1425
19.
Zurück zum Zitat Benkeser C, Burg A, Cupaiuolo T, Huang Q (2009) Design and optimization of an HSDPA turbo decoder ASIC. IEEE J Solid State Circuits 44(1):98–106CrossRef Benkeser C, Burg A, Cupaiuolo T, Huang Q (2009) Design and optimization of an HSDPA turbo decoder ASIC. IEEE J Solid State Circuits 44(1):98–106CrossRef
20.
Zurück zum Zitat Muller O, Baghdadi A, Jezequel M (2009) From parallelism levels to a multi-ASIP architecture for turbo decoding. IEEE Trans Very Large Scale Integr (VLSI) Syst 17(1):92–102CrossRef Muller O, Baghdadi A, Jezequel M (2009) From parallelism levels to a multi-ASIP architecture for turbo decoding. IEEE Trans Very Large Scale Integr (VLSI) Syst 17(1):92–102CrossRef
21.
Zurück zum Zitat Vogt J, Finger A (2000) Improving the max-log-MAP turbo decoder. Electron Lett 36(23):1937–1939CrossRef Vogt J, Finger A (2000) Improving the max-log-MAP turbo decoder. Electron Lett 36(23):1937–1939CrossRef
22.
Zurück zum Zitat Liu C, Bie Z, Chen C, Jiao X (2013) A parallel LTE turbo decoder on GPU. In: Proceedings of the 15th IEEE international conference on communication technology conference (ICCT), pp 609–614 Liu C, Bie Z, Chen C, Jiao X (2013) A parallel LTE turbo decoder on GPU. In: Proceedings of the 15th IEEE international conference on communication technology conference (ICCT), pp 609–614
23.
Zurück zum Zitat Chen X, Zhu J, Wen Z, Wang Y, Yang H (2013) BER, guaranteed optimization and implementation of parallel turbo decoding on GPU. In: Proceedings of the 8th international conference on communications and networking in China (CHINACOM), pp 183–188 Chen X, Zhu J, Wen Z, Wang Y, Yang H (2013) BER, guaranteed optimization and implementation of parallel turbo decoding on GPU. In: Proceedings of the 8th international conference on communications and networking in China (CHINACOM), pp 183–188
24.
Zurück zum Zitat Xianjun J, Canfeng C, Jaaskelainen P, Guzma V, Berg H (2013) A 122mb/s turbo decoder using a mid-range GPU. In: IWCMC proc., pp 1090–1094 Xianjun J, Canfeng C, Jaaskelainen P, Guzma V, Berg H (2013) A 122mb/s turbo decoder using a mid-range GPU. In: IWCMC proc., pp 1090–1094
25.
Zurück zum Zitat Wu M, Wang G, Yin B, Studer C, Cavallaro JR (2013) HSPA+/LTE - a turbo decoder on GPU and multicore architecture. In: Proceedings of the Asilomar conference on signals, systems and computers, pp 824–828 Wu M, Wang G, Yin B, Studer C, Cavallaro JR (2013) HSPA+/LTE - a turbo decoder on GPU and multicore architecture. In: Proceedings of the Asilomar conference on signals, systems and computers, pp 824–828
26.
Zurück zum Zitat Li R, Dou Y, Xu J, Niu X, Ni S (2014) An efficient parallel SOVA-based turbo decoder for software defined radio on GPU. IEICE Trans Fund Electron Commun Comput Sci 97(5):1027–1036CrossRef Li R, Dou Y, Xu J, Niu X, Ni S (2014) An efficient parallel SOVA-based turbo decoder for software defined radio on GPU. IEICE Trans Fund Electron Commun Comput Sci 97(5):1027–1036CrossRef
27.
Zurück zum Zitat Cassagne A, Tonnellier T, Leroux C, Le Gal B, Aumage O, Barthou D (2016) Beyond Gbps turbo decoder on multi-core CPUs. In: Proceeding of the international symposium on turbo codes and iterative information processing (ISTC). Brest, pp 136–140 Cassagne A, Tonnellier T, Leroux C, Le Gal B, Aumage O, Barthou D (2016) Beyond Gbps turbo decoder on multi-core CPUs. In: Proceeding of the international symposium on turbo codes and iterative information processing (ISTC). Brest, pp 136–140
28.
Zurück zum Zitat Le Gal B, Jego C (2016) High-throughput multi-core LDPC decoders based on x86 processor. IEEE Trans Parallel Distrib Syst (TPDS) 27(5):1373–1386CrossRef Le Gal B, Jego C (2016) High-throughput multi-core LDPC decoders based on x86 processor. IEEE Trans Parallel Distrib Syst (TPDS) 27(5):1373–1386CrossRef
29.
Zurück zum Zitat Andrade J, Falcao G, Silva V, Sousa L (2016) A survey on programmable LDPC decoders. IEEE Access 4:6704–6718CrossRef Andrade J, Falcao G, Silva V, Sousa L (2016) A survey on programmable LDPC decoders. IEEE Access 4:6704–6718CrossRef
30.
Zurück zum Zitat Le Gal B, Jego C (2017) Low-latency software LDPC decoders. In: Proceedings of the IEEE internationnal workshop on signal processing systems (SIPS). Lorient, pp 1–6 Le Gal B, Jego C (2017) Low-latency software LDPC decoders. In: Proceedings of the IEEE internationnal workshop on signal processing systems (SIPS). Lorient, pp 1–6
31.
Zurück zum Zitat Le Gal B, Leroux C, Jego C (2015) Multi-Gb/s software decoding of polar codes. IEEE Trans Signal Process 63(2):349–359MathSciNetCrossRef Le Gal B, Leroux C, Jego C (2015) Multi-Gb/s software decoding of polar codes. IEEE Trans Signal Process 63(2):349–359MathSciNetCrossRef
32.
Zurück zum Zitat Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2015) Unrolled polar decoders, part ii: fast list decoders. IEEE Journal on Selected Areas in Communications - Special Issue on Recent Advances In Capacity Approaching Codes (submitted) Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2015) Unrolled polar decoders, part ii: fast list decoders. IEEE Journal on Selected Areas in Communications - Special Issue on Recent Advances In Capacity Approaching Codes (submitted)
33.
Zurück zum Zitat Falcao G, Andrade J, Silva V, Sousa L (2011) GPU-based DVB-S2 LDPC decoder with high throughput and fast error floor detection. IET Electron Lett 47(9):542–543CrossRef Falcao G, Andrade J, Silva V, Sousa L (2011) GPU-based DVB-S2 LDPC decoder with high throughput and fast error floor detection. IET Electron Lett 47(9):542–543CrossRef
34.
Zurück zum Zitat Chinnici S, Spallaccini P (2012) Fast simulation of turbo codes on GPUs. In: Proceeding of the 7th international symposium on turbo codes and iterative information processing (ISTC), pp 61–65 Chinnici S, Spallaccini P (2012) Fast simulation of turbo codes on GPUs. In: Proceeding of the 7th international symposium on turbo codes and iterative information processing (ISTC), pp 61–65
35.
Zurück zum Zitat Grayver E (2013) Implementing software defined radio. Springer, New YorkCrossRef Grayver E (2013) Implementing software defined radio. Springer, New YorkCrossRef
36.
Zurück zum Zitat ITU-R (2014) Framework and overall objectives of the future development of IMT for 2020 and beyond in [IMT.VISION] ITU-R (2014) Framework and overall objectives of the future development of IMT for 2020 and beyond in [IMT.VISION]
37.
Zurück zum Zitat Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. In: Proceedings of the IEEE international conference on communications (ICC), pp 1064–1070 Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. In: Proceedings of the IEEE international conference on communications (ICC), pp 1064–1070
38.
Zurück zum Zitat Bahl L, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inf Theory, 284–287 Bahl L, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inf Theory, 284–287
39.
Zurück zum Zitat Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In: Proceedings of the IEEE international conference on communications (ICC), vol 2, pp 1009–1013 Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In: Proceedings of the IEEE international conference on communications (ICC), vol 2, pp 1009–1013
40.
Zurück zum Zitat Boutillon E, Sánchez-Rojas J-L, Marchand C (2014) Simplified compression of redundancy free trellis sections in turbo decoder. IEEE Commun Lett 18(6):941–944CrossRef Boutillon E, Sánchez-Rojas J-L, Marchand C (2014) Simplified compression of redundancy free trellis sections in turbo decoder. IEEE Commun Lett 18(6):941–944CrossRef
41.
Zurück zum Zitat Muller O, Baghdadi A, Jezequel M (2006) Exploring parallel processing levels for convolutional turbo decoding. In: Proceedings of the international conference on information & communication technologies, vol 2, pp 2353–2358 Muller O, Baghdadi A, Jezequel M (2006) Exploring parallel processing levels for convolutional turbo decoding. In: Proceedings of the international conference on information & communication technologies, vol 2, pp 2353–2358
42.
Zurück zum Zitat Sun Y, Cavallaro JR (2011) Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integr VLSI J 44(4):305–315CrossRef Sun Y, Cavallaro JR (2011) Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integr VLSI J 44(4):305–315CrossRef
43.
Zurück zum Zitat Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.15 GBit/s turbo code decoder for LTE advanced base station applications. In: Proceedings of the 7th international symposium on turbo codes and iterative information processing (ISTC), pp 21–25 Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.15 GBit/s turbo code decoder for LTE advanced base station applications. In: Proceedings of the 7th international symposium on turbo codes and iterative information processing (ISTC), pp 21–25
44.
Zurück zum Zitat Shrestha R, Paily RP (2014) High-throughput turbo decoder with parallel architecture for LTE wireless communication standards. IEEE Trans Circ Syst I 61:9 Shrestha R, Paily RP (2014) High-throughput turbo decoder with parallel architecture for LTE wireless communication standards. IEEE Trans Circ Syst I 61:9
45.
Zurück zum Zitat Wu M, Sun Y, Wang G, Cavallaro JR (2011) Implementation of a high throughput 3GPP turbo decoder on GPU. J Signal Process Syst Springer 65(2):171–183CrossRef Wu M, Sun Y, Wang G, Cavallaro JR (2011) Implementation of a high throughput 3GPP turbo decoder on GPU. J Signal Process Syst Springer 65(2):171–183CrossRef
46.
Zurück zum Zitat Yoge D, Chandrachoodan N (2012) GPU implementation of a programmable turbo decoder for software defined radio applications. In: Proceedings of the 25th international conference on VLSI design (VLSID), pp 149–154 Yoge D, Chandrachoodan N (2012) GPU implementation of a programmable turbo decoder for software defined radio applications. In: Proceedings of the 25th international conference on VLSI design (VLSID), pp 149–154
47.
Zurück zum Zitat Zhang Y, Xing Z, Yuan L, Liu C, Wang Q (2014) The acceleration of turbo decoder on the newest GPGPU of kepler architecture. In: Proceedings of the 14th international symposium on communications and information technologies (ISCIT), pp 199–203 Zhang Y, Xing Z, Yuan L, Liu C, Wang Q (2014) The acceleration of turbo decoder on the newest GPGPU of kepler architecture. In: Proceedings of the 14th international symposium on communications and information technologies (ISCIT), pp 199–203
48.
Zurück zum Zitat Huang L, Luo Y, Wang H, Yang F, Shi Z, Gu D (2011) A high speed turbo decoder implementation for CPU-based SDR system. In: Proceedings of the IET international conference on communication technology and application (ICCTA), pp 19–23 Huang L, Luo Y, Wang H, Yang F, Shi Z, Gu D (2011) A high speed turbo decoder implementation for CPU-based SDR system. In: Proceedings of the IET international conference on communication technology and application (ICCTA), pp 19–23
49.
Zurück zum Zitat Zhang S, Qian R, Peng T, Duan R, Chen K (2012) High throughput turbo decoder design for GPP platform. In: Proceedings of the 7th international conference on communications and networking in China, pp 817–821 Zhang S, Qian R, Peng T, Duan R, Chen K (2012) High throughput turbo decoder design for GPP platform. In: Proceedings of the 7th international conference on communications and networking in China, pp 817–821
50.
Zurück zum Zitat Giard P, Sarkis G, Leroux C, Thibeault C, Gross WJ (2016) Low-latency software polar decoders. Journal of Signal Processing Systems Springer Giard P, Sarkis G, Leroux C, Thibeault C, Gross WJ (2016) Low-latency software polar decoders. Journal of Signal Processing Systems Springer
51.
Zurück zum Zitat Sun J, Takeshita O (2005) Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Trans Inf Theory 51:101–119MathSciNetCrossRef Sun J, Takeshita O (2005) Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Trans Inf Theory 51:101–119MathSciNetCrossRef
52.
Zurück zum Zitat Montorsi G, Paily RP (2001) Design of fixed-point iterative decoders for concatenated codes with interleavers. IEEE J Select Areas Commun 19:5CrossRef Montorsi G, Paily RP (2001) Design of fixed-point iterative decoders for concatenated codes with interleavers. IEEE J Select Areas Commun 19:5CrossRef
53.
Zurück zum Zitat Shahabuddin S, Janhunen J, MJ, et al (2014) Design of a transport triggered vector processor for turbo decoding. J Analog Integr Circ Signal Process 78:3CrossRef Shahabuddin S, Janhunen J, MJ, et al (2014) Design of a transport triggered vector processor for turbo decoding. J Analog Integr Circ Signal Process 78:3CrossRef
54.
Zurück zum Zitat Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8–17CrossRef Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8–17CrossRef
55.
Zurück zum Zitat Belfanti S, Roth C, Gautschi M, Benkeser C, Huang Q (2013) A 1 Gbps LTE-advanced turbo-decoder ASIC in 65 nm CMOS. In: Proceedings of the symposium on VLSI circuits Belfanti S, Roth C, Gautschi M, Benkeser C, Huang Q (2013) A 1 Gbps LTE-advanced turbo-decoder ASIC in 65 nm CMOS. In: Proceedings of the symposium on VLSI circuits
56.
Zurück zum Zitat Wu M, Wang G, Yin B, Studer C, Cavallaro JR (2013) HSPA+/LTE-a turbo decoder on GPU and multicore CPU. In: Proceedings of the Asilomar conference on signals, systems and computers, pp 824–828 Wu M, Wang G, Yin B, Studer C, Cavallaro JR (2013) HSPA+/LTE-a turbo decoder on GPU and multicore CPU. In: Proceedings of the Asilomar conference on signals, systems and computers, pp 824–828
Metadaten
Titel
Low-latency and high-throughput software turbo decoders on multi-core architectures
verfasst von
Bertrand Le Gal
Christophe Jego
Publikationsdatum
03.08.2019
Verlag
Springer International Publishing
Erschienen in
Annals of Telecommunications / Ausgabe 1-2/2020
Print ISSN: 0003-4347
Elektronische ISSN: 1958-9395
DOI
https://doi.org/10.1007/s12243-019-00727-5

Weitere Artikel der Ausgabe 1-2/2020

Annals of Telecommunications 1-2/2020 Zur Ausgabe

Neuer Inhalt