Skip to main content
Erschienen in: Photonic Network Communications 3/2018

16.01.2018 | Original Paper

Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation

verfasst von: Md. Saiful Islam, Jakeya Sultana, Mohsen Dorraki, Javid Atai, Mohammad Rakibul Islam, Alex Dinovitser, Brian Wai-Him Ng, Derek Abbott

Erschienen in: Photonic Network Communications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a hybrid-core circular cladded photonic crystal fiber is designed and analyzed for application in the terahertz frequency range. We introduce a rectangular structure in addition to a conventional hexagonal structure in the core to reduce the material absorption loss. The modal characteristics of the fiber have been investigated using full vector finite element method. Simulated results exhibit an ultra-low effective material loss of 0.035 cm\(^{-1}\) and ultra-flattened dispersion of 0.07 ps/THz/cm. Some other important fiber characteristics suitable for terahertz signal transmission including confinement loss, core power fraction, effective area and single-mode conditions of the fiber have also been investigated. In order to simplify design and facilitate fabrication, only circular shaped air holes have been employed. Due to its promising characteristics, the proposed waveguide may provide efficient transmission of broadband terahertz signals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbott, D., Zhang, X.C.: Scanning the issue: T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)CrossRef Abbott, D., Zhang, X.C.: Scanning the issue: T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)CrossRef
2.
Zurück zum Zitat Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B., Mickan, S.P., Fischer, B.M., Abbott, D.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)CrossRef Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B., Mickan, S.P., Fischer, B.M., Abbott, D.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)CrossRef
3.
Zurück zum Zitat Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens 7(3), 234–245 (2017)CrossRef Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens 7(3), 234–245 (2017)CrossRef
4.
Zurück zum Zitat Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss photonic crystal fiber. IEEE Photonics J. 4(6), 2315–2325 (2012)CrossRef Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss photonic crystal fiber. IEEE Photonics J. 4(6), 2315–2325 (2012)CrossRef
5.
Zurück zum Zitat Byrne, M.B., Shaukat, M.U., Cunningham, J.E., Linfield, E.H., Davies, A.G.: Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro optic detection. Appl. Phys. Lett. 98(15), 151104 (2011)CrossRef Byrne, M.B., Shaukat, M.U., Cunningham, J.E., Linfield, E.H., Davies, A.G.: Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro optic detection. Appl. Phys. Lett. 98(15), 151104 (2011)CrossRef
6.
Zurück zum Zitat Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon 1, 97–105 (2007)CrossRef Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon 1, 97–105 (2007)CrossRef
7.
Zurück zum Zitat Mantsch, H.H., Naumann, D.: Terahertz spectroscopy: the renaissance of far infrared spectroscopy. J. Mol. Struct. 964(1–3), 1–4 (2010)CrossRef Mantsch, H.H., Naumann, D.: Terahertz spectroscopy: the renaissance of far infrared spectroscopy. J. Mol. Struct. 964(1–3), 1–4 (2010)CrossRef
8.
Zurück zum Zitat Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R.: Terahertz spectroscopy techniques for explosive detection. Anal. Bioanal. Chem. 395(2), 247–257 (2009)CrossRef Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R.: Terahertz spectroscopy techniques for explosive detection. Anal. Bioanal. Chem. 395(2), 247–257 (2009)CrossRef
9.
Zurück zum Zitat Pinto, D., Obayya, S.S.A.: Improved complex envelope alternative direction implicit finite difference time domain method for photonic bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)CrossRef Pinto, D., Obayya, S.S.A.: Improved complex envelope alternative direction implicit finite difference time domain method for photonic bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)CrossRef
10.
Zurück zum Zitat Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56, 3477–3483 (2017)CrossRef Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56, 3477–3483 (2017)CrossRef
11.
Zurück zum Zitat Jin, Y.-S., Kim, G.-J., Jeon, S.-G.: Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 49(2), 513–517 (2006) Jin, Y.-S., Kim, G.-J., Jeon, S.-G.: Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 49(2), 513–517 (2006)
12.
Zurück zum Zitat Wang, K., Mittleman, D.M.: Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004)CrossRef Wang, K., Mittleman, D.M.: Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004)CrossRef
13.
Zurück zum Zitat Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)CrossRef Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)CrossRef
14.
Zurück zum Zitat Chen, L., Chen, H., Kao, T., Lu, J., Sun, C.: Low-loss sub-wavelength plastic fiber for terahertz wave guiding. Opt. Lett. 31(3), 308–310 (2006)CrossRef Chen, L., Chen, H., Kao, T., Lu, J., Sun, C.: Low-loss sub-wavelength plastic fiber for terahertz wave guiding. Opt. Lett. 31(3), 308–310 (2006)CrossRef
15.
Zurück zum Zitat Lu, J.Y., Yu, C.P., Chang, H.C., Chen, H., Li, Y., Pan, C., Sun, C.: Terahertz air-core microstructure fiber. Appl. Phys. Lett. 92(6), 064105 (2008)CrossRef Lu, J.Y., Yu, C.P., Chang, H.C., Chen, H., Li, Y., Pan, C., Sun, C.: Terahertz air-core microstructure fiber. Appl. Phys. Lett. 92(6), 064105 (2008)CrossRef
16.
Zurück zum Zitat Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 113514 (2007)CrossRef Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 113514 (2007)CrossRef
17.
Zurück zum Zitat Zhao, G., Mors, M.T., Wenckebach, T., Planken, P.C.M.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. B. 19(6), 1476–1479 (2002)CrossRef Zhao, G., Mors, M.T., Wenckebach, T., Planken, P.C.M.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. B. 19(6), 1476–1479 (2002)CrossRef
18.
Zurück zum Zitat Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(6), 961–963 (1997)CrossRef Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(6), 961–963 (1997)CrossRef
19.
Zurück zum Zitat Knight, J.C., Birks, T.A., Cregan, R.F.: Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)CrossRef Knight, J.C., Birks, T.A., Cregan, R.F.: Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)CrossRef
20.
Zurück zum Zitat Lee, J.H., The, P.C., Yusoff, Z.: A holey fiber based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878 (2002)CrossRef Lee, J.H., The, P.C., Yusoff, Z.: A holey fiber based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878 (2002)CrossRef
21.
Zurück zum Zitat Lu, S., Li, W., Guo, H.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt. 50(30), 5798–5802 (2011)CrossRef Lu, S., Li, W., Guo, H.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt. 50(30), 5798–5802 (2011)CrossRef
22.
Zurück zum Zitat Ademgil, H., Haxha, S., Abdel Malek, F.: Highly nonlinear bending insensitive birefringent photonic crystal fibres. Sci. Res. 2(8), 608–616 (2010) Ademgil, H., Haxha, S., Abdel Malek, F.: Highly nonlinear bending insensitive birefringent photonic crystal fibres. Sci. Res. 2(8), 608–616 (2010)
23.
Zurück zum Zitat Hassani, A., Dupuis, A., Skorobogatiy, M.: Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)CrossRef Hassani, A., Dupuis, A., Skorobogatiy, M.: Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)CrossRef
24.
Zurück zum Zitat Hassani, A., Dupuis, A., Skorobogatiy, M.: Porous polymer fibers for low-loss terahertz guiding. Opt. Express 16(9), 6340–6351 (2008)CrossRef Hassani, A., Dupuis, A., Skorobogatiy, M.: Porous polymer fibers for low-loss terahertz guiding. Opt. Express 16(9), 6340–6351 (2008)CrossRef
25.
Zurück zum Zitat Han, H., Park, H., Cho, M., Kim, J.: Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80(15), 2634–2636 (2002)CrossRef Han, H., Park, H., Cho, M., Kim, J.: Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80(15), 2634–2636 (2002)CrossRef
26.
Zurück zum Zitat Ung, B., Mazhorova, A., Dupuis, A., Rozé, M., Skorobogatiy, M.: Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19(26), B848–B861 (2011)CrossRef Ung, B., Mazhorova, A., Dupuis, A., Rozé, M., Skorobogatiy, M.: Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19(26), B848–B861 (2011)CrossRef
27.
Zurück zum Zitat Sultana, J., Islam, MdS, Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56(7), 076114 (2017)CrossRef Sultana, J., Islam, MdS, Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56(7), 076114 (2017)CrossRef
28.
Zurück zum Zitat Islam, M.S., Sultana, J., Atai, J., Islam, M.R., Abbott, D.: Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Optik–Int. J. Light Electron Opt. 145, 398–406 (2017)CrossRef Islam, M.S., Sultana, J., Atai, J., Islam, M.R., Abbott, D.: Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Optik–Int. J. Light Electron Opt. 145, 398–406 (2017)CrossRef
29.
Zurück zum Zitat Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)CrossRef Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)CrossRef
30.
Zurück zum Zitat Kaijage, S.F., Ouyang, Z., Jim, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013)CrossRef Kaijage, S.F., Ouyang, Z., Jim, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013)CrossRef
31.
Zurück zum Zitat Islam, R., Hasanuzzaman, G.K.M., Habib, M.S., Rana, S., Khan, M.A.G.: Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt. Fiber Technol. 24, 38–43 (2015)CrossRef Islam, R., Hasanuzzaman, G.K.M., Habib, M.S., Rana, S., Khan, M.A.G.: Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt. Fiber Technol. 24, 38–43 (2015)CrossRef
32.
Zurück zum Zitat Hasanuzzaman, G.K.M., Habib, S., Razzak, S.M.A.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)CrossRef Hasanuzzaman, G.K.M., Habib, S., Razzak, S.M.A.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)CrossRef
33.
Zurück zum Zitat Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016)CrossRef Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016)CrossRef
34.
Zurück zum Zitat Islam, S., Islam, M.R., Faisal, M., Arefin, A.S.M.S., Rahman, H., Sultana, J., Rana, Sohel: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 55(7), 076117 (2016)CrossRef Islam, S., Islam, M.R., Faisal, M., Arefin, A.S.M.S., Rahman, H., Sultana, J., Rana, Sohel: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 55(7), 076117 (2016)CrossRef
35.
Zurück zum Zitat Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol. Lett. 28(14), 1737–1740 (2016)CrossRef Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol. Lett. 28(14), 1737–1740 (2016)CrossRef
36.
Zurück zum Zitat Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017)CrossRef Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017)CrossRef
37.
Zurück zum Zitat Ponseca, C.S., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C.J., van Eijkelenborg, M.A.: Transmission of terahertz radiation using a micro-structured polymer optical fiber. Opt. Lett. 33(9), 902–904 (2008)CrossRef Ponseca, C.S., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C.J., van Eijkelenborg, M.A.: Transmission of terahertz radiation using a micro-structured polymer optical fiber. Opt. Lett. 33(9), 902–904 (2008)CrossRef
38.
Zurück zum Zitat Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43(2B), 317–319 (2004)CrossRef Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43(2B), 317–319 (2004)CrossRef
39.
Zurück zum Zitat Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken Jepsen, P.C.M., Bang, O., Uhd, P.: Bendable, low-loss TOPAS fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2004)CrossRef Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken Jepsen, P.C.M., Bang, O., Uhd, P.: Bendable, low-loss TOPAS fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2004)CrossRef
40.
Zurück zum Zitat Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)CrossRef Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)CrossRef
41.
Zurück zum Zitat Argyros, A.: Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013, 785162 (2013)CrossRef Argyros, A.: Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013, 785162 (2013)CrossRef
42.
Zurück zum Zitat Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 24, 6–11 (2016) Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 24, 6–11 (2016)
43.
Zurück zum Zitat Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Yuan, W., Bang, O.: High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4785 (2013)CrossRef Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Yuan, W., Bang, O.: High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4785 (2013)CrossRef
44.
Zurück zum Zitat Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjaer, E.M., Lindvold, L.: Localized bio-sensing with TOPAS micro-structured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)CrossRef Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjaer, E.M., Lindvold, L.: Localized bio-sensing with TOPAS micro-structured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)CrossRef
45.
Zurück zum Zitat Balakrishnan, J., Fischer, B.M., Abbott, D.: Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl. Opt. 48(12), 2262–2266 (2009)CrossRef Balakrishnan, J., Fischer, B.M., Abbott, D.: Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl. Opt. 48(12), 2262–2266 (2009)CrossRef
46.
Zurück zum Zitat Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., Bang, O.: Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016)CrossRef Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., Bang, O.: Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016)CrossRef
47.
Zurück zum Zitat Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low loss hybrid core porous fiber for broadband applications. Appl. Opt. 56(9), 1232–1237 (2017) Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low loss hybrid core porous fiber for broadband applications. Appl. Opt. 56(9), 1232–1237 (2017)
48.
Zurück zum Zitat Bai, J.J., Li, J.N., Zhang, H., Fang, H.: A porous terahertz fiber with randomly distributed air holes. Appl. Phys. B 103(2), 381–386 (2011)CrossRef Bai, J.J., Li, J.N., Zhang, H., Fang, H.: A porous terahertz fiber with randomly distributed air holes. Appl. Phys. B 103(2), 381–386 (2011)CrossRef
49.
Zurück zum Zitat Kiang, K.M., Frampton, K., Monro, T.M., Moore, R., Tucknott, J., Hewak, D.W., Richardson, D.J., Rutt, H.N.: Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546–547 (2002)CrossRef Kiang, K.M., Frampton, K., Monro, T.M., Moore, R., Tucknott, J., Hewak, D.W., Richardson, D.J., Rutt, H.N.: Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546–547 (2002)CrossRef
Metadaten
Titel
Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation
verfasst von
Md. Saiful Islam
Jakeya Sultana
Mohsen Dorraki
Javid Atai
Mohammad Rakibul Islam
Alex Dinovitser
Brian Wai-Him Ng
Derek Abbott
Publikationsdatum
16.01.2018
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 3/2018
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-017-0751-7

Weitere Artikel der Ausgabe 3/2018

Photonic Network Communications 3/2018 Zur Ausgabe

Neuer Inhalt