Skip to main content
Erschienen in: Photonic Network Communications 3/2022

11.06.2022 | Original Paper

Low-power all-optical switch based on slow light photonic crystal

verfasst von: Tina Daghooghi, Mohammad Soroosh, Karim Ansari-Asl

Erschienen in: Photonic Network Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, an optical switch based on two-dimensional photonic crystals is presented for the slow light regime. This regime enhances light–matter interaction and can be used to design low-power all-optical devices. Due to slow light properties in photonic crystals, the maximum flat band for the group index of 8 was obtained. The threshold light intensity was reduced to 16 mW/µm2 in comparison with other works. The maximum rise and fall times were calculated about 1 ps, which means the switching frequency is about 1 THz. The total footprint of the proposed switch is 5.5 × 9 µm2, which makes the possibility for optical integration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao, Y., Zhao, H.W., Zhang, X., Yuan, Y., Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41(5), 517–525 (2009) CrossRef Zhao, Y., Zhao, H.W., Zhang, X., Yuan, Y., Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41(5), 517–525 (2009) CrossRef
2.
Zurück zum Zitat Krauss, T.F.: Why do we need slow light. Nat. Photon. 2(8), 448–450 (2008) CrossRef Krauss, T.F.: Why do we need slow light. Nat. Photon. 2(8), 448–450 (2008) CrossRef
3.
Zurück zum Zitat Khurgin, J.B., Tucker, R.S.: Slow Light: Science and Applications, 2nd edn. CRC Press, Boca Raton (2008) CrossRef Khurgin, J.B., Tucker, R.S.: Slow Light: Science and Applications, 2nd edn. CRC Press, Boca Raton (2008) CrossRef
4.
Zurück zum Zitat Mortensen, N.A., Xiao, S.: Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett. 90(14), 141108-1-141108–3 (2007) CrossRef Mortensen, N.A., Xiao, S.: Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett. 90(14), 141108-1-141108–3 (2007) CrossRef
5.
Zurück zum Zitat Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010) CrossRef Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010) CrossRef
6.
Zurück zum Zitat Wu, J., Li, Y., Peng, C., Wang, Z.Y.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283(14), 2815–2819 (2010) CrossRef Wu, J., Li, Y., Peng, C., Wang, Z.Y.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283(14), 2815–2819 (2010) CrossRef
7.
Zurück zum Zitat Digonnet, M., Wen, H., Terrel, M.A., Fan, Sh.: Slow light in fiber sensors. Proc. SPIE Int. Soc. Opt. Eng. 8273, 82730W (2012) Digonnet, M., Wen, H., Terrel, M.A., Fan, Sh.: Slow light in fiber sensors. Proc. SPIE Int. Soc. Opt. Eng. 8273, 82730W (2012)
8.
Zurück zum Zitat Chahal, M., Celler, G.K., Jaluria, Y., Jiang, W.: Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform. Opt. Express. 20(4), 4225–4231 (2012) CrossRef Chahal, M., Celler, G.K., Jaluria, Y., Jiang, W.: Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform. Opt. Express. 20(4), 4225–4231 (2012) CrossRef
9.
Zurück zum Zitat Zadok, A., Eyal, A., Tur, M.: Stimulated brillouin scattering slow light in optical fibers. Appl. Opt. 50(25), E38–E49 (2011) CrossRef Zadok, A., Eyal, A., Tur, M.: Stimulated brillouin scattering slow light in optical fibers. Appl. Opt. 50(25), E38–E49 (2011) CrossRef
10.
Zurück zum Zitat Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999) CrossRef Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999) CrossRef
11.
Zurück zum Zitat Zhu, Zh., Dawes, A.M.C., Gauthier, D.J., Zhang, L., Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightw. Technol. 25(1), 201–206 (2007) CrossRef Zhu, Zh., Dawes, A.M.C., Gauthier, D.J., Zhang, L., Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightw. Technol. 25(1), 201–206 (2007) CrossRef
12.
Zurück zum Zitat Qin, G.S., Jose, R., Ohishi, Y.: Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(9), 093109-1-093109–5 (2007) CrossRef Qin, G.S., Jose, R., Ohishi, Y.: Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(9), 093109-1-093109–5 (2007) CrossRef
13.
Zurück zum Zitat Totsuka, K., Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E. 75(1pt2), 016610-1-016610–5 (2007) Totsuka, K., Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E. 75(1pt2), 016610-1-016610–5 (2007)
14.
Zurück zum Zitat Zhao, Y., Zhang, Y., Wang, Q., Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14(3), 407–426 (2015) CrossRef Zhao, Y., Zhang, Y., Wang, Q., Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14(3), 407–426 (2015) CrossRef
15.
Zurück zum Zitat Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007) CrossRef Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007) CrossRef
16.
Zurück zum Zitat Dai, L., Jiang, C.: Low dispersion slow light waveguide with high coupling efficiency. J. Phys. D Appl. Phys. 42(22), 225102-1-225102–6 (2009) CrossRef Dai, L., Jiang, C.: Low dispersion slow light waveguide with high coupling efficiency. J. Phys. D Appl. Phys. 42(22), 225102-1-225102–6 (2009) CrossRef
17.
Zurück zum Zitat Kuramochi, E., Notomi, M., Hughes, S., Shinya, A., Watanabe, T., Ramunno, L.: Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B 72, 161318-1-161318–4 (2005) CrossRef Kuramochi, E., Notomi, M., Hughes, S., Shinya, A., Watanabe, T., Ramunno, L.: Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B 72, 161318-1-161318–4 (2005) CrossRef
18.
Zurück zum Zitat Li, J., White, T.P., O’Faolain, L., Gomez-Iglesias, A., Krauss, T.F.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Exp. 16(9), 6227–6232 (2008) CrossRef Li, J., White, T.P., O’Faolain, L., Gomez-Iglesias, A., Krauss, T.F.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Exp. 16(9), 6227–6232 (2008) CrossRef
19.
Zurück zum Zitat Tian, H.P., Zhai, J., Ji, Y.F.: Flat band slow light performance in dual-slot silicon-on insulator based photonic crystal waveguide. Jpn. J. Appl. Phys. 52(3), 032001-1-032001–5 (2013) Tian, H.P., Zhai, J., Ji, Y.F.: Flat band slow light performance in dual-slot silicon-on insulator based photonic crystal waveguide. Jpn. J. Appl. Phys. 52(3), 032001-1-032001–5 (2013)
20.
Zurück zum Zitat Aghababaeian, H., Vadjed-Samiei, M.H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15(4), 398–402 (2011) CrossRef Aghababaeian, H., Vadjed-Samiei, M.H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15(4), 398–402 (2011) CrossRef
21.
Zurück zum Zitat Hao, R., Cassan, E., Le Roux, X., Gao, D., Do Khanh, V., Vivien, L., Marris-Morini, D., Zhang, X.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Exp. 18(16), 16309–16319 (2010) CrossRef Hao, R., Cassan, E., Le Roux, X., Gao, D., Do Khanh, V., Vivien, L., Marris-Morini, D., Zhang, X.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Exp. 18(16), 16309–16319 (2010) CrossRef
22.
Zurück zum Zitat Caer, C., Le Roux, X., Do Khanh, V., Marris-Morini, D., Izard, N., Vivien, L., Gao, D., Cassan, E.: Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photon. Technol. Lett. 23(18), 1298–1300 (2011) CrossRef Caer, C., Le Roux, X., Do Khanh, V., Marris-Morini, D., Izard, N., Vivien, L., Gao, D., Cassan, E.: Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photon. Technol. Lett. 23(18), 1298–1300 (2011) CrossRef
23.
Zurück zum Zitat Pourmand, M., Karimkhani, A., Moravvej-Farshi, M.K.: Slow light photonic crystal waveguides with large delay-bandwidth product. Opt. Eng. 55(12), 123108 (2016) CrossRef Pourmand, M., Karimkhani, A., Moravvej-Farshi, M.K.: Slow light photonic crystal waveguides with large delay-bandwidth product. Opt. Eng. 55(12), 123108 (2016) CrossRef
24.
Zurück zum Zitat Long, F., Tian, H., Ji, Y.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightw. Technol. 28(8), 1139–1143 (2010) CrossRef Long, F., Tian, H., Ji, Y.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightw. Technol. 28(8), 1139–1143 (2010) CrossRef
25.
Zurück zum Zitat Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightw. Technol. 32(18), 3126–3131 (2014) CrossRef Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightw. Technol. 32(18), 3126–3131 (2014) CrossRef
26.
Zurück zum Zitat Ghadrdan, M., Mansouri-Birjandi, M.A.: Implementation of all-optical switch based on nonlinear photonic crystal ring resonator with embedding metallic nanowires in the ring resonators. Opt. Quantum Electron. 48(5), 299 (2016) CrossRef Ghadrdan, M., Mansouri-Birjandi, M.A.: Implementation of all-optical switch based on nonlinear photonic crystal ring resonator with embedding metallic nanowires in the ring resonators. Opt. Quantum Electron. 48(5), 299 (2016) CrossRef
27.
Zurück zum Zitat Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2008) CrossRef Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2008) CrossRef
28.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik 130, 1214–1221 (2017) MATHCrossRef Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik 130, 1214–1221 (2017) MATHCrossRef
29.
Zurück zum Zitat Daghooghi, T., Soroosh, M., Ansari-Asl, K.: Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57(9), 2250–2257 (2018) CrossRef Daghooghi, T., Soroosh, M., Ansari-Asl, K.: Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57(9), 2250–2257 (2018) CrossRef
30.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017) CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017) CrossRef
31.
Zurück zum Zitat Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik 127(8), 3955–3958 (2016) CrossRef Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik 127(8), 3955–3958 (2016) CrossRef
32.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: Design and simulation of all optical decoder based on nonlinear PhCRRs. Optik 156, 701–706 (2018) CrossRef Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: Design and simulation of all optical decoder based on nonlinear PhCRRs. Optik 156, 701–706 (2018) CrossRef
33.
Zurück zum Zitat O’Faolain, L., White, T.P., O’Brien, D., Yuan, X., Settle, M.D., Krauss, T.F.: Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Exp. 15(20), 13129–13138 (2007) CrossRef O’Faolain, L., White, T.P., O’Brien, D., Yuan, X., Settle, M.D., Krauss, T.F.: Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Exp. 15(20), 13129–13138 (2007) CrossRef
34.
Zurück zum Zitat Beggs, D.M., O’Faolain, L., Krauss, T.F.: Accurate determination of the functional hole size in photonic crystal slabs using optical methods. Photon. Nanostruct. 6(3–4), 213–218 (2008) CrossRef Beggs, D.M., O’Faolain, L., Krauss, T.F.: Accurate determination of the functional hole size in photonic crystal slabs using optical methods. Photon. Nanostruct. 6(3–4), 213–218 (2008) CrossRef
35.
Zurück zum Zitat Pu, S., Wang, H., Wang, N., Zeng, X.: Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids. Opt. Commun. 311, 16–19 (2013) CrossRef Pu, S., Wang, H., Wang, N., Zeng, X.: Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids. Opt. Commun. 311, 16–19 (2013) CrossRef
36.
Zurück zum Zitat Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999) CrossRef Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999) CrossRef
37.
Zurück zum Zitat Bahadori-Haghighi, Sh., Ghayour, R.: Optical self-phase modulation using a new photon crystal coupled-cavity waveguide. Opt. Appl. XLIV(1), 29–38 (2014) Bahadori-Haghighi, Sh., Ghayour, R.: Optical self-phase modulation using a new photon crystal coupled-cavity waveguide. Opt. Appl. XLIV(1), 29–38 (2014)
38.
Zurück zum Zitat Barrios, C.A.: High-performance all-optical silicon micro switch. Electron. Lett. 40(14), 862–863 (2004) CrossRef Barrios, C.A.: High-performance all-optical silicon micro switch. Electron. Lett. 40(14), 862–863 (2004) CrossRef
39.
Zurück zum Zitat Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008) CrossRef Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008) CrossRef
40.
Zurück zum Zitat Abedi, K., Mirjalili, S.M.: Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt. Commun. 339, 7–13 (2015) CrossRef Abedi, K., Mirjalili, S.M.: Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt. Commun. 339, 7–13 (2015) CrossRef
41.
Zurück zum Zitat Frandsen, L., Lavrinenko, A.V., Fage-Pedersen, J., Borel, P.I.: Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14(20), 9444–9450 (2006) CrossRef Frandsen, L., Lavrinenko, A.V., Fage-Pedersen, J., Borel, P.I.: Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14(20), 9444–9450 (2006) CrossRef
42.
Zurück zum Zitat Wang, D., Zhang, J., Yuan, L., Lei, J., Chen, S., Han, J., Hou, Sh.: Slow light engineering in poly atomic photonic crystal waveguides based on square lattice. Opt. Commun. 284(24), 5829–5832 (2011) CrossRef Wang, D., Zhang, J., Yuan, L., Lei, J., Chen, S., Han, J., Hou, Sh.: Slow light engineering in poly atomic photonic crystal waveguides based on square lattice. Opt. Commun. 284(24), 5829–5832 (2011) CrossRef
43.
Zurück zum Zitat Fibich, G., Gaeta, A.L.: Critical power for self-focusing in bulk media and in hallow waveguides. Opt. Lett. 25(5), 335–337 (2000) CrossRef Fibich, G., Gaeta, A.L.: Critical power for self-focusing in bulk media and in hallow waveguides. Opt. Lett. 25(5), 335–337 (2000) CrossRef
44.
Zurück zum Zitat Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29(3), 265–267 (2004) CrossRef Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29(3), 265–267 (2004) CrossRef
45.
Zurück zum Zitat Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007) CrossRef Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007) CrossRef
46.
Zurück zum Zitat Sullivan, D.M.: Electromagnetic Simulation Using the FTDT Method. IEEE Press, Hoboken (2013) CrossRef Sullivan, D.M.: Electromagnetic Simulation Using the FTDT Method. IEEE Press, Hoboken (2013) CrossRef
47.
Zurück zum Zitat Tay, T.T., Mareels, I., Moore, J.B.: High Performance Control. Birkhäuser, Boston (1997) MATH Tay, T.T., Mareels, I., Moore, J.B.: High Performance Control. Birkhäuser, Boston (1997) MATH
48.
Zurück zum Zitat Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35(3), 335–341 (2018) CrossRef Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35(3), 335–341 (2018) CrossRef
49.
Zurück zum Zitat Khosravi, Sh., Zavvari, M.: Design and analysis of integrated all-optical 2×4 decoder based on 2D photonic crystals. Photonic Netw. Commun. 35(1), 122–128 (2018) CrossRef Khosravi, Sh., Zavvari, M.: Design and analysis of integrated all-optical 2×4 decoder based on 2D photonic crystals. Photonic Netw. Commun. 35(1), 122–128 (2018) CrossRef
50.
Zurück zum Zitat Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017) MathSciNetCrossRef Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017) MathSciNetCrossRef
Metadaten
Titel
Low-power all-optical switch based on slow light photonic crystal
verfasst von
Tina Daghooghi
Mohammad Soroosh
Karim Ansari-Asl
Publikationsdatum
11.06.2022
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 3/2022
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-022-00977-9

Weitere Artikel der Ausgabe 3/2022

Photonic Network Communications 3/2022 Zur Ausgabe