Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

Low-Power, High-Speed and High-Effective Resolution Pipeline Analog-to-Digital Converters in Deep Nanoscale CMOS

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews recent advances in low-power design techniques for high-speed and high-effective resolution pipeline Analog-to-Digital Converters (ADCs). The advantages of replacing, in a pipeline ADC architecture, the traditional local low-resolution parallel (flash) quantizers by low-resolution successive-approximation register (SAR) ADCs are shown through a set of selected works. Some of the most promising energy-efficient residue amplification techniques are reviewed, spanning from open-loop and closed-loop amplifierless approaches to innovative and highly-scalable amplifier-based topologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Devarajan, et. al., “A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS Pipeline ADC”, IEEE J. Solid State Circuits, vol. 44, 3305–3313, Dec. 2009. S. Devarajan, et. al., “A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS Pipeline ADC”, IEEE J. Solid State Circuits, vol. 44, 3305–3313, Dec. 2009.
2.
Zurück zum Zitat S. Ray, B.-S. Song, “A 13-bit Linear, 20-MS/s Pipeline ADC With Self-Configured Capacitor Matching”, IEEE J. Solid State Circuits, vol. 42, 463–474, Mar. 2007. S. Ray, B.-S. Song, “A 13-bit Linear, 20-MS/s Pipeline ADC With Self-Configured Capacitor Matching”, IEEE J. Solid State Circuits, vol. 42, 463–474, Mar. 2007.
3.
Zurück zum Zitat R. Aparicio, A. Hajimiri, “Capacity Limits and Matching Properties of Integrated Capacitors”, IEEE J. Solid State Circuits, vol. 37, 384–394, Mar. 2002. R. Aparicio, A. Hajimiri, “Capacity Limits and Matching Properties of Integrated Capacitors”, IEEE J. Solid State Circuits, vol. 37, 384–394, Mar. 2002.
4.
Zurück zum Zitat J. Goes et. al., “Purely-Digital versus Mixed-Signal Self-Calibration Techniques in High-Resolution Pipeline ADCs”, Proc. NORCHIP’2010, pp. 1–8, Finland, Nov. 2010. J. Goes et. al., “Purely-Digital versus Mixed-Signal Self-Calibration Techniques in High-Resolution Pipeline ADCs”, Proc. NORCHIP’2010, pp. 1–8, Finland, Nov. 2010.
5.
Zurück zum Zitat M. Saberi, R. Lotfi, k. Mafinezhad, W. A. Serdijn, “Analysis of Power Consumption and Linearity in Capacitive Digital-to-Analog Converters Used in Successive Approximation ADCs”, IEEE Transactions on Circuits and Systems – I, vo. 58, nº. 8, pp. 1736–1748, Aug. 2011. M. Saberi, R. Lotfi, k. Mafinezhad, W. A. Serdijn, “Analysis of Power Consumption and Linearity in Capacitive Digital-to-Analog Converters Used in Successive Approximation ADCs”, IEEE Transactions on Circuits and Systems – I, vo. 58, nº. 8, pp. 1736–1748, Aug. 2011.
6.
Zurück zum Zitat Y.-D. Jeon et al., “A 9.15mW 0.22 mm2 10b 204MS/s pipelined SAR ADC in 65 nm CMOS”, in 2010 IEEE Proc. CICC, pp. 1–4, 2010. Y.-D. Jeon et al., “A 9.15mW 0.22 mm2 10b 204MS/s pipelined SAR ADC in 65 nm CMOS”, in 2010 IEEE Proc. CICC, pp. 1–4, 2010.
7.
Zurück zum Zitat C. C. Lee and M. P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC”, IEEE Journal of Solid-State Circuits, vol. 46, n. 4, pp. 859–869, April 2011. C. C. Lee and M. P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC”, IEEE Journal of Solid-State Circuits, vol. 46, n. 4, pp. 859–869, April 2011.
8.
Zurück zum Zitat Y. Zhu et al., “A 50-fJ 10-b 160-MS/s Pipelined-SAR ADC Decoupled Flip-Around MDAC and Self-Embedded Offset Cancellation”, IEEE Journal of Solid-State Circuits, vol. 47, n. 11, pp. 2614–2626, Nov. 2012. Y. Zhu et al., “A 50-fJ 10-b 160-MS/s Pipelined-SAR ADC Decoupled Flip-Around MDAC and Self-Embedded Offset Cancellation”, IEEE Journal of Solid-State Circuits, vol. 47, n. 11, pp. 2614–2626, Nov. 2012.
9.
Zurück zum Zitat B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7 mW 11b 250 MS/s 2-Times Interleaved Fully Dynamic Pipelined SAR ADC in 40 nm Digital CMOS”, IEEE Journal of Solid-State Circuits, vol. 47, n. 12, pp. 2880–2887, Dec. 2012. B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7 mW 11b 250 MS/s 2-Times Interleaved Fully Dynamic Pipelined SAR ADC in 40 nm Digital CMOS”, IEEE Journal of Solid-State Circuits, vol. 47, n. 12, pp. 2880–2887, Dec. 2012.
10.
Zurück zum Zitat I. Ahmed, J. Mulder, D. A Johns, “A Low-Power Capacitive Charge Pump Based Pipelined ADC”, IEEE Journal of Solid-State Circuits, vol. 45, n. 5, pp. 1016–1027, May 2010. I. Ahmed, J. Mulder, D. A Johns, “A Low-Power Capacitive Charge Pump Based Pipelined ADC”, IEEE Journal of Solid-State Circuits, vol. 45, n. 5, pp. 1016–1027, May 2010.
11.
Zurück zum Zitat J. Hu, N. Dolev, B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification”, IEEE Journal of Solid-State Circuits, vol. 44, n. 4, pp. 1057–1066, April 2009. J. Hu, N. Dolev, B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification”, IEEE Journal of Solid-State Circuits, vol. 44, n. 4, pp. 1057–1066, April 2009.
12.
Zurück zum Zitat J. Oliveira, J. Goes, et. al., “An 8-bit 120 MS/s Interleaved CMOS Pipeline ADC Based on MOS Parametric Amplification”, IEEE Transactions on Circuits and Systems – II, pp. 105–109, Feb. 2010. J. Oliveira, J. Goes, et. al., “An 8-bit 120 MS/s Interleaved CMOS Pipeline ADC Based on MOS Parametric Amplification”, IEEE Transactions on Circuits and Systems – II, pp. 105–109, Feb. 2010.
13.
Zurück zum Zitat S. Ranganathan and Y. Tsividis, “Discrete-time parametric amplification based on a three-terminal MOS varactor: Analysis and experimental results”, IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2087–2093, Dec. 2003. S. Ranganathan and Y. Tsividis, “Discrete-time parametric amplification based on a three-terminal MOS varactor: Analysis and experimental results”, IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2087–2093, Dec. 2003.
14.
Zurück zum Zitat J. K. Fiorenza et. al., “Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies”, IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006. J. K. Fiorenza et. al., “Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies”, IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006.
15.
Zurück zum Zitat L. Books and H.-S. Lee, “A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC”, IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677–2687, Dec. 2007. L. Books and H.-S. Lee, “A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC”, IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677–2687, Dec. 2007.
16.
Zurück zum Zitat J. Chu and H.-S. Lee, “A Zero-Crossing Based 12b 100MS/s Pipelined ADC with Decision Boundary Gap Estimation Calibration”, IEEE Proc. VLSI Circuits, pp. 237–238, 2010. J. Chu and H.-S. Lee, “A Zero-Crossing Based 12b 100MS/s Pipelined ADC with Decision Boundary Gap Estimation Calibration”, IEEE Proc. VLSI Circuits, pp. 237–238, 2010.
17.
Zurück zum Zitat J. Kuppambatti and P. R. Kinget, “A Low-Power Zero-Crossing Pipeline-SAR ADC with On-Chip Dynamically Loaded Pre-Charged Reference”, IEEE Proc. ESSCIRC’13, pp. 113–116, 2013. J. Kuppambatti and P. R. Kinget, “A Low-Power Zero-Crossing Pipeline-SAR ADC with On-Chip Dynamically Loaded Pre-Charged Reference”, IEEE Proc. ESSCIRC’13, pp. 113–116, 2013.
18.
Zurück zum Zitat B. McMillan, “Multiple-Feedback Systems”, US patent 2,748,201, May 1956. B. McMillan, “Multiple-Feedback Systems”, US patent 2,748,201, May 1956.
19.
Zurück zum Zitat S.-W. Sin, S.-P. U, R. P. Martins, “Generalized Circuit Techniques for Low-Voltage High-Speed Reset- and Switched-Opamps”, IEEE Transactions on Circuits and Systems – I, pp. 2188–2201, Sep. 2008. S.-W. Sin, S.-P. U, R. P. Martins, “Generalized Circuit Techniques for Low-Voltage High-Speed Reset- and Switched-Opamps”, IEEE Transactions on Circuits and Systems – I, pp. 2188–2201, Sep. 2008.
20.
Zurück zum Zitat Y. Miyahara, et. al., “Adaptive Cancellation of Gain Nonlinearity Errors in Pipelined ADCs”, IEEE Proc. ISSCC’13, pp. 282–283, 2013. Y. Miyahara, et. al., “Adaptive Cancellation of Gain Nonlinearity Errors in Pipelined ADCs”, IEEE Proc. ISSCC’13, pp. 282–283, 2013.
21.
Zurück zum Zitat S.-H. W. Chiang, H. Sun, Behzad Razavi, “A 10-Bit 800-MHz 19-mW CMOS ADC”, IEEE Proc. VLSI Circuits, pp. C100–C101, 2013. S.-H. W. Chiang, H. Sun, Behzad Razavi, “A 10-Bit 800-MHz 19-mW CMOS ADC”, IEEE Proc. VLSI Circuits, pp. C100–C101, 2013.
22.
Zurück zum Zitat B. Hershberg, et. al., “Ring Amplifiers for Switched-Capacitor Circuits”, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012. B. Hershberg, et. al., “Ring Amplifiers for Switched-Capacitor Circuits”, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
23.
Zurück zum Zitat B. Hershberg and Un-Ku Moon, “A 75.9 dB-SNDR 2.96mW 29fJ/conv-step Ringamp-Only Pipelined ADC”, IEEE Proc. VLSI Circuits, pp. C94–C95, 2013. B. Hershberg and Un-Ku Moon, “A 75.9 dB-SNDR 2.96mW 29fJ/conv-step Ringamp-Only Pipelined ADC”, IEEE Proc. VLSI Circuits, pp. C94–C95, 2013.
24.
Zurück zum Zitat M. Figueiredo, G. Evans, J. Goes, “Reference-Free High-Speed CMOS Pipeline Analog-to-Digital Converters”, Springer, ISBN 978-1-4614-3466-5, 2013. M. Figueiredo, G. Evans, J. Goes, “Reference-Free High-Speed CMOS Pipeline Analog-to-Digital Converters”, Springer, ISBN 978-1-4614-3466-5, 2013.
25.
Zurück zum Zitat M. Figueiredo, G. Evan, J. Goes, “A Reference-Free 7-bit 500 MS/s Pipeline ADC Using Current-Mode Reference Shifting and Built-in Threshold Quantizers”, Analog Integrated Circuits and Signal Processing Journal (AICSP, Springer), vol. 75. no. 1, pp. 53–65, 2013. M. Figueiredo, G. Evan, J. Goes, “A Reference-Free 7-bit 500 MS/s Pipeline ADC Using Current-Mode Reference Shifting and Built-in Threshold Quantizers”, Analog Integrated Circuits and Signal Processing Journal (AICSP, Springer), vol. 75. no. 1, pp. 53–65, 2013.
26.
Zurück zum Zitat P. Quinn and M. Pribytko, “Capacitor Matching Insensitive 12-bit 3.3 MS/s Algorithmic ADC in 0.25 μm CMOS”, IEEE Proc. CICC’03, pp. 425–426, 2003. P. Quinn and M. Pribytko, “Capacitor Matching Insensitive 12-bit 3.3 MS/s Algorithmic ADC in 0.25 μm CMOS”, IEEE Proc. CICC’03, pp. 425–426, 2003.
27.
Zurück zum Zitat Y.-C. Huang and T.-C. Lee, “A 10-bit 100-MS/s 4.5-mW Pipelined ADC With a Time-Sharing Technique”, IEEE Transactions on Circuits and Systems – I, vol. 58, pp. 1157–1166, June 2011. Y.-C. Huang and T.-C. Lee, “A 10-bit 100-MS/s 4.5-mW Pipelined ADC With a Time-Sharing Technique”, IEEE Transactions on Circuits and Systems – I, vol. 58, pp. 1157–1166, June 2011.
28.
Zurück zum Zitat T. Oh, H. Venkatram and U.-K. Moon, “A 70MS/s 69.3 dB SNDR 38.2fJ/conversion-step Time-Based Pipelined ADC”, IEEE Proc. VLSI Circuits, pp. C96–C97, 2013. T. Oh, H. Venkatram and U.-K. Moon, “A 70MS/s 69.3 dB SNDR 38.2fJ/conversion-step Time-Based Pipelined ADC”, IEEE Proc. VLSI Circuits, pp. C96–C97, 2013.
Metadaten
Titel
Low-Power, High-Speed and High-Effective Resolution Pipeline Analog-to-Digital Converters in Deep Nanoscale CMOS
verfasst von
João Goes
Nuno Pereira
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-07938-7_1

Neuer Inhalt