Skip to main content
Erschienen in: Strength of Materials 2/2021

10.07.2021

Low-Temperature Crack Resistance of Cryogenic Structures

verfasst von: N. A. Makhutov, I. V. Makarenko, L. V. Makarenko

Erschienen in: Strength of Materials | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The versions of nonlinear defining relations and characteristics of nonlinear fracture mechanics controlling and simulating the service life, survivability, and durability of parts of modern power and energy structures operating at low, cryogenic temperatures are investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. A. Makhutov, Structural Strength, Life and Technogenic Safety [in Russian], Nauka, Novosibirsk (2005). N. A. Makhutov, Structural Strength, Life and Technogenic Safety [in Russian], Nauka, Novosibirsk (2005).
2.
Zurück zum Zitat A. E. Andreikiv, Spatial Problems of Crack Theory [in Russian], Naukova Dumka, Kiev (1982). A. E. Andreikiv, Spatial Problems of Crack Theory [in Russian], Naukova Dumka, Kiev (1982).
3.
Zurück zum Zitat N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966). N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).
4.
Zurück zum Zitat G. P. Cherepanov, “Plastic fracture lines at the crack tip,” Appl. Math. Mech., 40, No. 4, 720–728 (1976). G. P. Cherepanov, “Plastic fracture lines at the crack tip,” Appl. Math. Mech., 40, No. 4, 720–728 (1976).
5.
Zurück zum Zitat N. A. Makhutov and I. V. Makarenko, “Growth of inclined surface cracks in low-cycle fatigue,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 68–72 (1986). N. A. Makhutov and I. V. Makarenko, “Growth of inclined surface cracks in low-cycle fatigue,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 68–72 (1986).
7.
Zurück zum Zitat N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “A study of fracture kinetics in welded components of nuclear power plant equipment in the presence of surface semi-elliptical variously oriented cracks,” Strength Mater., 42, No. 1, 25–31 (2010), 10.1007/s11223-010-9183-7. N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “A study of fracture kinetics in welded components of nuclear power plant equipment in the presence of surface semi-elliptical variously oriented cracks,” Strength Mater., 42, No. 1, 25–31 (2010), 10.1007/s11223-010-9183-7.
8.
Zurück zum Zitat ANSYS. Structural Analysis Guide 660578 (2010). ANSYS. Structural Analysis Guide 660578 (2010).
9.
Zurück zum Zitat N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “Calculation and experimental analysis of the stress-strain state for inclined half-penny surface cracks,” Inorg. Mater., 53, No. 15, 1502–1505 (2017).CrossRef N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “Calculation and experimental analysis of the stress-strain state for inclined half-penny surface cracks,” Inorg. Mater., 53, No. 15, 1502–1505 (2017).CrossRef
10.
Zurück zum Zitat C. Q. Li, G. Y. Fu, and W. Yang, “Stress intensity factors for inclined external surface cracks in pressurized pipes,” Eng. Fract. Mech., 165, 72–86 (2016).CrossRef C. Q. Li, G. Y. Fu, and W. Yang, “Stress intensity factors for inclined external surface cracks in pressurized pipes,” Eng. Fract. Mech., 165, 72–86 (2016).CrossRef
11.
Zurück zum Zitat L. W. Carey, “The effect of low temperatures on the fatigue of high-strength structural grade steels,” Proc. Mat. Sci., 3, 209–214 (2014). L. W. Carey, “The effect of low temperatures on the fatigue of high-strength structural grade steels,” Proc. Mat. Sci., 3, 209–214 (2014).
12.
Zurück zum Zitat C. F. Shih and R. J. Asaro, “Elastoplastic analysis of cracks on biomaterial interfaces: Part I – Small scale yielding,” J. Appl. Mech.-T ASME, 55, 299–316 (1988).CrossRef C. F. Shih and R. J. Asaro, “Elastoplastic analysis of cracks on biomaterial interfaces: Part I – Small scale yielding,” J. Appl. Mech.-T ASME, 55, 299–316 (1988).CrossRef
13.
Zurück zum Zitat J. Predan, V. Moèilnik, and N. Gubeljak, “Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion,” Eng. Fract. Mech., 105, 152–168 (2013).CrossRef J. Predan, V. Moèilnik, and N. Gubeljak, “Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion,” Eng. Fract. Mech., 105, 152–168 (2013).CrossRef
14.
Zurück zum Zitat A. Evans, A. Clarke, R. Gravina, et al., “Improved stress intensity factors for selected configurations in cracked plates,” Eng. Fract. Mech., 127, 296–312 (2014).CrossRef A. Evans, A. Clarke, R. Gravina, et al., “Improved stress intensity factors for selected configurations in cracked plates,” Eng. Fract. Mech., 127, 296–312 (2014).CrossRef
15.
Zurück zum Zitat S. Yang, Y. L. Ni, and C. Q. Li, “Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels,” Eng. Fract. Mech., 109, 138–149 (2013).CrossRef S. Yang, Y. L. Ni, and C. Q. Li, “Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels,” Eng. Fract. Mech., 109, 138–149 (2013).CrossRef
16.
Zurück zum Zitat D. Yi, S. Idapalapati, Z. M. Xiao, and S. B. Kumar, “Fracture capacity of girth welded pipelines with 3D surface cracks subjected to biaxial loading conditions,” Int. J. Pres. Ves. Pip., 92, 115–126 (2012).CrossRef D. Yi, S. Idapalapati, Z. M. Xiao, and S. B. Kumar, “Fracture capacity of girth welded pipelines with 3D surface cracks subjected to biaxial loading conditions,” Int. J. Pres. Ves. Pip., 92, 115–126 (2012).CrossRef
17.
Zurück zum Zitat D. Yi, Z. M. Xiao, S. Idapalapati, and S. B. Kumar, “Fracture analysis of girth welded pipelines with 3D embedded cracks subjected to biaxial loading conditions,” Eng. Fract. Mech., 96, 570–587 (2012).CrossRef D. Yi, Z. M. Xiao, S. Idapalapati, and S. B. Kumar, “Fracture analysis of girth welded pipelines with 3D embedded cracks subjected to biaxial loading conditions,” Eng. Fract. Mech., 96, 570–587 (2012).CrossRef
18.
Zurück zum Zitat C. F. Shih, “Relationship between the J-integral and the crack opening displacement for stationary and extending cracks,” J. Mech. Phys. Solids, 29, 305–326 (1981).CrossRef C. F. Shih, “Relationship between the J-integral and the crack opening displacement for stationary and extending cracks,” J. Mech. Phys. Solids, 29, 305–326 (1981).CrossRef
19.
Zurück zum Zitat J. C. Newman and I. S. Raju, “An empirical stress-intensity factor equation for the surface crack,” Eng. Fract. Mech., 15, Nos. 1–2, 185–192 (1981). J. C. Newman and I. S. Raju, “An empirical stress-intensity factor equation for the surface crack,” Eng. Fract. Mech., 15, Nos. 1–2, 185–192 (1981).
20.
Zurück zum Zitat R. Akbari Alashti, S. Jafari, and S. J. Hosseinipour, “Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure,” Eng. Fail. Anal., 47, Part A, 208–228 (2015). R. Akbari Alashti, S. Jafari, and S. J. Hosseinipour, “Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure,” Eng. Fail. Anal., 47, Part A, 208–228 (2015).
21.
Zurück zum Zitat G. Y. Fu, W. Yang, and C. Q. Li, “Stress intensity factors for mixed mode fracture induced by inclined cracks in pipes under axial tension and bending,” Theor. Appl. Fract. Mec., 89, 100–109 (2017).CrossRef G. Y. Fu, W. Yang, and C. Q. Li, “Stress intensity factors for mixed mode fracture induced by inclined cracks in pipes under axial tension and bending,” Theor. Appl. Fract. Mec., 89, 100–109 (2017).CrossRef
Metadaten
Titel
Low-Temperature Crack Resistance of Cryogenic Structures
verfasst von
N. A. Makhutov
I. V. Makarenko
L. V. Makarenko
Publikationsdatum
10.07.2021
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2021
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00291-1

Weitere Artikel der Ausgabe 2/2021

Strength of Materials 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.