Skip to main content

2012 | OriginalPaper | Buchkapitel

Low-Temperature Fuel Cell Technology for Green Energy

verfasst von : Prof. Scott A. Gold

Erschienen in: Handbook of Climate Change Mitigation

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fuel cells convert chemical energy to electrical energy via an electrochemical reaction. They are more efficient than traditional heat engine–based power systems and can have zero or near-zero emissions during operation. A leading alternative green energy technology, fuel cells are finding applications in many areas, including transportation, portable power, and stationary power generation. These divergent uses have driven development of several different types of fuel cell technologies. A brief overview of these will be provided in this chapter; however, the focus will be on low-temperature proton exchange membrane (PEM) technologies predominant in portable power and automotive applications. Fuel cell operating principles will be reviewed, focusing on thermodynamics, efficiency, reaction kinetics, and transport phenomena in order to develop a framework for evaluating different fuel cells and comparing them with other power systems. Theoretically, much improvement in fuel cell performance is possible, and is needed along with means of lowering economic costs in order for fuel cells to see more widespread use. Some of the major technical challenges in these regards are outlined along with approaches being investigated to meet these challenges. Life cycle assessment and its application to fuel cells will be discussed to evaluate environmental impacts associated with manufacturing, operation, and disposal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Srinivasan S, Renaut M, Phillippe S, Christopher Y (1999) Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century. Annu Rev Energy Environ 24:281–328CrossRef Srinivasan S, Renaut M, Phillippe S, Christopher Y (1999) Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century. Annu Rev Energy Environ 24:281–328CrossRef
2.
Zurück zum Zitat FCB (2003) NEC unveils fully integrated fuel cell notebook PC. Fuel Cells Bull 2003(8):1 FCB (2003) NEC unveils fully integrated fuel cell notebook PC. Fuel Cells Bull 2003(8):1
3.
Zurück zum Zitat FCB (2005) LG Chem commercializes portable fuel cell. Fuel Cells Bull 2005:5 FCB (2005) LG Chem commercializes portable fuel cell. Fuel Cells Bull 2005:5
4.
Zurück zum Zitat Oil Gas European Magazine (2001) On road to world's first hydrogen economy. Oil Gas Eur Mag 27:9 Oil Gas European Magazine (2001) On road to world's first hydrogen economy. Oil Gas Eur Mag 27:9
5.
Zurück zum Zitat FCB (2004) In brief: Fuel cell buses operational in Perth. Fuel Cells Bull 7 FCB (2004) In brief: Fuel cell buses operational in Perth. Fuel Cells Bull 7
6.
Zurück zum Zitat Energy World (2004) Zero-emission fuel cell buses for 10 European cities. Energy World 18 Energy World (2004) Zero-emission fuel cell buses for 10 European cities. Energy World 18
7.
Zurück zum Zitat FCB (2007) Honda to start leasing fuel cell cars in US. Fuel Cell Bull 2007:6 FCB (2007) Honda to start leasing fuel cell cars in US. Fuel Cell Bull 2007:6
8.
Zurück zum Zitat FCB (2007) In brief: Ford, GM focused on contrasting records for their FCVs. Fuel Cell Bull 2007:11 FCB (2007) In brief: Ford, GM focused on contrasting records for their FCVs. Fuel Cell Bull 2007:11
9.
Zurück zum Zitat O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, Hoboken, NJ O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, Hoboken, NJ
10.
Zurück zum Zitat Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Hoboken, NJ Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Hoboken, NJ
11.
Zurück zum Zitat Hoogers G (2003) Fuel cell technology handbook. CRC Press, Boca Raton, FL Hoogers G (2003) Fuel cell technology handbook. CRC Press, Boca Raton, FL
12.
Zurück zum Zitat Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics, 2nd edn. Kluwer /Plenum, New York Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics, 2nd edn. Kluwer /Plenum, New York
13.
Zurück zum Zitat Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
14.
Zurück zum Zitat Sawyer DT, Andrzej S, Julian LR Jr (1995) Electrochemistry for chemists, 2nd edn. Wiley, New York Sawyer DT, Andrzej S, Julian LR Jr (1995) Electrochemistry for chemists, 2nd edn. Wiley, New York
15.
Zurück zum Zitat Wright SE (2004) Comparison of the theoretical performance potential of fuel cells and heat engines. Renewable Energy 29:179–195CrossRef Wright SE (2004) Comparison of the theoretical performance potential of fuel cells and heat engines. Renewable Energy 29:179–195CrossRef
16.
Zurück zum Zitat Haynes C (2001) Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. J Power Sources 92:199–203CrossRef Haynes C (2001) Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. J Power Sources 92:199–203CrossRef
17.
Zurück zum Zitat Lutz AE, Larson RS, Keller JO (2002) Thermodynamic comparison of fuel cells to the Carnot cycle. Int J Hyd Energy 27:1103–1111CrossRef Lutz AE, Larson RS, Keller JO (2002) Thermodynamic comparison of fuel cells to the Carnot cycle. Int J Hyd Energy 27:1103–1111CrossRef
18.
Zurück zum Zitat Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion – II. Proton diffusion mechanisms and conductivity. J Electrochem Soc 152:E123–E130CrossRef Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion – II. Proton diffusion mechanisms and conductivity. J Electrochem Soc 152:E123–E130CrossRef
19.
Zurück zum Zitat Nguyen PT, Berning T, Djilali N (2004) Computational model of a PEM fuel cell with serpentine gas flow channels. J Power Sources 130:149–157CrossRef Nguyen PT, Berning T, Djilali N (2004) Computational model of a PEM fuel cell with serpentine gas flow channels. J Power Sources 130:149–157CrossRef
20.
Zurück zum Zitat Heinzel A, Barragán VM (1999) Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74CrossRef Heinzel A, Barragán VM (1999) Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74CrossRef
21.
Zurück zum Zitat Jiang R, Chu D (2004) Comparative studies of methanol crossover and cell performance for a DMFC. J Electrochem Soc 151:A69–A76CrossRef Jiang R, Chu D (2004) Comparative studies of methanol crossover and cell performance for a DMFC. J Electrochem Soc 151:A69–A76CrossRef
22.
Zurück zum Zitat Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238CrossRef Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238CrossRef
23.
Zurück zum Zitat Cheng X, Zhang J, Tang Y, Song C, Shen J, Song D (2007) Hydrogen crossover in high-temperature PEM fuel cells. J Power Sources 167:25–31CrossRef Cheng X, Zhang J, Tang Y, Song C, Shen J, Song D (2007) Hydrogen crossover in high-temperature PEM fuel cells. J Power Sources 167:25–31CrossRef
24.
Zurück zum Zitat Rhee YW, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion® membranes. J Power Sources 117:35–38CrossRef Rhee YW, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion® membranes. J Power Sources 117:35–38CrossRef
25.
Zurück zum Zitat Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31CrossRef Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31CrossRef
26.
Zurück zum Zitat Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Comp 461:253–262CrossRef Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Comp 461:253–262CrossRef
27.
Zurück zum Zitat Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132CrossRef Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132CrossRef
28.
Zurück zum Zitat Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157:78–84CrossRef Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157:78–84CrossRef
29.
Zurück zum Zitat Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835CrossRef Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835CrossRef
30.
Zurück zum Zitat Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149(7):S59–S67CrossRef Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149(7):S59–S67CrossRef
31.
Zurück zum Zitat Gülzow E (1996) Alkaline fuel cells: a critical view. J Power Sources 61:99–104CrossRef Gülzow E (1996) Alkaline fuel cells: a critical view. J Power Sources 61:99–104CrossRef
32.
Zurück zum Zitat McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hyd Energy 27:507–526CrossRef McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hyd Energy 27:507–526CrossRef
33.
Zurück zum Zitat Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosensors Bioelectronics 21:2015–2045CrossRef Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosensors Bioelectronics 21:2015–2045CrossRef
34.
Zurück zum Zitat Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87:455–468 Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87:455–468
35.
Zurück zum Zitat Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886CrossRef Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886CrossRef
36.
Zurück zum Zitat Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209–216CrossRef Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209–216CrossRef
37.
Zurück zum Zitat Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells – Part I: the cathode challenges. Platinum Metals Rev 46:3–14 Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells – Part I: the cathode challenges. Platinum Metals Rev 46:3–14
38.
Zurück zum Zitat US Department of Energy (2002) National Hydrogen Energy Roadmap. US Office of Energy Efficiency and Renewable Energy, Washington, DC US Department of Energy (2002) National Hydrogen Energy Roadmap. US Office of Energy Efficiency and Renewable Energy, Washington, DC
39.
Zurück zum Zitat Hubert M (2005) The grand challenge: hydrogen storage. Fuel Cell 5:20–22 Hubert M (2005) The grand challenge: hydrogen storage. Fuel Cell 5:20–22
40.
Zurück zum Zitat Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172CrossRef Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172CrossRef
41.
Zurück zum Zitat Shiraishi M, Takenobu T, Kataura H, Ata M (2004) Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms. Appl Phys A 78:947–954CrossRef Shiraishi M, Takenobu T, Kataura H, Ata M (2004) Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms. Appl Phys A 78:947–954CrossRef
42.
Zurück zum Zitat Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398CrossRef Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398CrossRef
43.
Zurück zum Zitat Yamanaka S, Fujikane M, Uno M, Murakami H, Miura O (2004) Hydrogen content and desorption of carbon nano-structures. J Alloys Comp 366:264–268CrossRef Yamanaka S, Fujikane M, Uno M, Murakami H, Miura O (2004) Hydrogen content and desorption of carbon nano-structures. J Alloys Comp 366:264–268CrossRef
44.
Zurück zum Zitat Panella B, Hirscher M (2005) Hydrogen physisorption in metal-organic porous crystals. Adv Mater 17:538–541CrossRef Panella B, Hirscher M (2005) Hydrogen physisorption in metal-organic porous crystals. Adv Mater 17:538–541CrossRef
45.
Zurück zum Zitat Van Den Berg AWC AWC, Areán CO CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chemical Communications 6:668–681CrossRef Van Den Berg AWC AWC, Areán CO CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chemical Communications 6:668–681CrossRef
46.
Zurück zum Zitat Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hyd Energy 32:1121–1140CrossRef Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hyd Energy 32:1121–1140CrossRef
47.
Zurück zum Zitat Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 10:2249–2258CrossRef Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 10:2249–2258CrossRef
48.
Zurück zum Zitat Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663CrossRef Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663CrossRef
49.
Zurück zum Zitat Stephens FH, Pons V, Baker RT (2007) Ammonia-borane: the hydrogen source par excellence? Dalton Trans 25:2613–2626CrossRef Stephens FH, Pons V, Baker RT (2007) Ammonia-borane: the hydrogen source par excellence? Dalton Trans 25:2613–2626CrossRef
50.
Zurück zum Zitat Marder TB (2007) Will we soon be fueling our automobiles with ammonia-borane? Angew Chem Int Ed 46:8116–8118CrossRef Marder TB (2007) Will we soon be fueling our automobiles with ammonia-borane? Angew Chem Int Ed 46:8116–8118CrossRef
51.
Zurück zum Zitat Hausdorf S, Baitalow F, Wolf G, Mertens FORL (2008) A procedure for the regeneration of ammonia borane from BNH-waste products. Int J Hyd Energy 33:608–614CrossRef Hausdorf S, Baitalow F, Wolf G, Mertens FORL (2008) A procedure for the regeneration of ammonia borane from BNH-waste products. Int J Hyd Energy 33:608–614CrossRef
52.
Zurück zum Zitat Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15CrossRef Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15CrossRef
53.
Zurück zum Zitat Lefévre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48:2749–2760CrossRef Lefévre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48:2749–2760CrossRef
54.
Zurück zum Zitat Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806CrossRef Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806CrossRef
55.
Zurück zum Zitat Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951CrossRef Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951CrossRef
56.
Zurück zum Zitat Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112:14706–14709CrossRef Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112:14706–14709CrossRef
57.
Zurück zum Zitat Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef
58.
Zurück zum Zitat Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J (2002) The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 149:A748CrossRef Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J (2002) The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 149:A748CrossRef
59.
Zurück zum Zitat Wee JH, Lee KY (2006) Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J Power Sources 157:128–135CrossRef Wee JH, Lee KY (2006) Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J Power Sources 157:128–135CrossRef
60.
Zurück zum Zitat Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378CrossRef Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378CrossRef
61.
Zurück zum Zitat Larminie J, Andrew D (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester Larminie J, Andrew D (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester
62.
Zurück zum Zitat Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. A survey of recent fuel cell related research. J Electroanal Chem 257:9–45CrossRef Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. A survey of recent fuel cell related research. J Electroanal Chem 257:9–45CrossRef
63.
Zurück zum Zitat Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells – Part III: challenges for the direct methanol fuel cell. Platinum Metals Rev 46:146–164 Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells – Part III: challenges for the direct methanol fuel cell. Platinum Metals Rev 46:146–164
64.
Zurück zum Zitat Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110CrossRef Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110CrossRef
65.
Zurück zum Zitat Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059CrossRef Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059CrossRef
66.
Zurück zum Zitat Bai Y, Wu J, Xi J, Wang J, Zhu W, Chen L, Qiu X (2005) Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem Commun 7:1087–1090CrossRef Bai Y, Wu J, Xi J, Wang J, Zhu W, Chen L, Qiu X (2005) Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem Commun 7:1087–1090CrossRef
67.
Zurück zum Zitat Song H, Qiu X, Li F (2008) Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electrooxidation. Electrochim Acta 53:3708–3713CrossRef Song H, Qiu X, Li F (2008) Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electrooxidation. Electrochim Acta 53:3708–3713CrossRef
68.
Zurück zum Zitat Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells. J Power Sources 142:223–237CrossRef Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells. J Power Sources 142:223–237CrossRef
69.
Zurück zum Zitat Kerres J, Hein M, Zhang W, Graf S, Nicoloso N (2003) Development of new blend membranes for polymer electrolyte fuel cell applications. J New Mater Electrochem Sys 6:223–229 Kerres J, Hein M, Zhang W, Graf S, Nicoloso N (2003) Development of new blend membranes for polymer electrolyte fuel cell applications. J New Mater Electrochem Sys 6:223–229
70.
Zurück zum Zitat Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154CrossRef Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154CrossRef
71.
Zurück zum Zitat Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRef Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRef
72.
Zurück zum Zitat Knauth P, Tuller HL (2002) Solid-state ionics: roots, status, and future prospects. J Am Ceram Soc 85:1654–1680CrossRef Knauth P, Tuller HL (2002) Solid-state ionics: roots, status, and future prospects. J Am Ceram Soc 85:1654–1680CrossRef
73.
Zurück zum Zitat Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837CrossRef Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837CrossRef
74.
Zurück zum Zitat Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRef Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRef
75.
Zurück zum Zitat Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
76.
Zurück zum Zitat Zawodzinski TA Jr, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140:1981–1985CrossRef Zawodzinski TA Jr, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140:1981–1985CrossRef
77.
Zurück zum Zitat Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041–1047CrossRef Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041–1047CrossRef
78.
Zurück zum Zitat Bocchetta P, Chiavarotti G, Masi R, Sunseri C, Di Quarto F (2004) Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures. Electrochem Commun 6:923–928CrossRef Bocchetta P, Chiavarotti G, Masi R, Sunseri C, Di Quarto F (2004) Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures. Electrochem Commun 6:923–928CrossRef
79.
Zurück zum Zitat Park Y-I, Nagai M, Kim J-D, Kobayashi K (2004) Inorganic proton-conducting gel glass/porous alumina nanocomposite. J Power Sources 137:175–182CrossRef Park Y-I, Nagai M, Kim J-D, Kobayashi K (2004) Inorganic proton-conducting gel glass/porous alumina nanocomposite. J Power Sources 137:175–182CrossRef
80.
Zurück zum Zitat Vichi FM, Colomer MT, Anderson MA (1999) Nanopore ceramic membranes as novel electrolytes for proton exchange membranes. Electrochem Solid-State Lett 2:313–316CrossRef Vichi FM, Colomer MT, Anderson MA (1999) Nanopore ceramic membranes as novel electrolytes for proton exchange membranes. Electrochem Solid-State Lett 2:313–316CrossRef
81.
Zurück zum Zitat Gold S, Chu K-L, Lu C, Shannon MA, Masel RI (2004) Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells. J Power Sources 135:198–203CrossRef Gold S, Chu K-L, Lu C, Shannon MA, Masel RI (2004) Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells. J Power Sources 135:198–203CrossRef
82.
Zurück zum Zitat Ioroi T, Kuraoka K, Yasuda K, Yazawa T, Miyazaki Y (2004) Surface-modified nanopore glass membrane as electrolyte for DMFCs. Electrochem Solid-State Lett 7:A394–A396CrossRef Ioroi T, Kuraoka K, Yasuda K, Yazawa T, Miyazaki Y (2004) Surface-modified nanopore glass membrane as electrolyte for DMFCs. Electrochem Solid-State Lett 7:A394–A396CrossRef
83.
Zurück zum Zitat Colomer MT, Anderson MA (2001) High porosity silica xerogels prepared by a particulate sol-gel route: pore structure and proton conductivity. J Non-Cryst Solids 290:93–104CrossRef Colomer MT, Anderson MA (2001) High porosity silica xerogels prepared by a particulate sol-gel route: pore structure and proton conductivity. J Non-Cryst Solids 290:93–104CrossRef
84.
Zurück zum Zitat Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109:71–75CrossRef Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109:71–75CrossRef
85.
Zurück zum Zitat Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hyd Energy 30:1297–1302CrossRef Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hyd Energy 30:1297–1302CrossRef
86.
Zurück zum Zitat Cunningham B, Baird DG (2006) The development of economical bipolar plates for fuel cells. J Mater Chem 16:4385–4388CrossRef Cunningham B, Baird DG (2006) The development of economical bipolar plates for fuel cells. J Mater Chem 16:4385–4388CrossRef
87.
Zurück zum Zitat Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell – a review. J Power Sources 163:755–767CrossRef Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell – a review. J Power Sources 163:755–767CrossRef
88.
Zurück zum Zitat Cunningham BD, Huang J, Baird DG (2007) Review of materials and processing methods used in the production of bipolar plates for fuel cells. Int Mater Rev 52:1–13CrossRef Cunningham BD, Huang J, Baird DG (2007) Review of materials and processing methods used in the production of bipolar plates for fuel cells. Int Mater Rev 52:1–13CrossRef
89.
Zurück zum Zitat Cho EA, Jeon US, Ha HY, Hong SA, Oh IH (2004) Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 125:178–182CrossRef Cho EA, Jeon US, Ha HY, Hong SA, Oh IH (2004) Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 125:178–182CrossRef
90.
Zurück zum Zitat Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40CrossRef Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40CrossRef
91.
Zurück zum Zitat Scholta J, Rohland B, Trapp V, Focken U (1999) Investigations on novel low-cost graphite composite bipolar plates. J Power Sources 84:231–234CrossRef Scholta J, Rohland B, Trapp V, Focken U (1999) Investigations on novel low-cost graphite composite bipolar plates. J Power Sources 84:231–234CrossRef
92.
Zurück zum Zitat Kuan HC, Ma CCM, Chen KH, Chen SM (2004) Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. J Power Sources 134:7–17CrossRef Kuan HC, Ma CCM, Chen KH, Chen SM (2004) Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. J Power Sources 134:7–17CrossRef
93.
Zurück zum Zitat Ayres RU (1995) Life cycle analysis: a critique, resources. Conserv Recycl 14:199–223CrossRef Ayres RU (1995) Life cycle analysis: a critique, resources. Conserv Recycl 14:199–223CrossRef
94.
Zurück zum Zitat Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85CrossRef Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85CrossRef
95.
Zurück zum Zitat Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300CrossRef Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300CrossRef
96.
Zurück zum Zitat Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388CrossRef Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388CrossRef
97.
Zurück zum Zitat Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells, Part I: methodological aspects. Int J Life Cycle Assess 8:283–289CrossRef Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells, Part I: methodological aspects. Int J Life Cycle Assess 8:283–289CrossRef
98.
Zurück zum Zitat Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydr Energy 26:91–101CrossRef Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydr Energy 26:91–101CrossRef
99.
Zurück zum Zitat Jeong KS, Oh BS (2002) Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. J Power Sources 105:58–65CrossRef Jeong KS, Oh BS (2002) Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. J Power Sources 105:58–65CrossRef
100.
Zurück zum Zitat Ogden JM, Williams RH, Larson ED (2004) Societal lifecycle costs of cars with alternative fuels/engines. Energy Policy 32:7–27CrossRef Ogden JM, Williams RH, Larson ED (2004) Societal lifecycle costs of cars with alternative fuels/engines. Energy Policy 32:7–27CrossRef
Metadaten
Titel
Low-Temperature Fuel Cell Technology for Green Energy
verfasst von
Prof. Scott A. Gold
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7991-9_43