Skip to main content

2015 | OriginalPaper | Buchkapitel

6. Low-Temperature Synthesis of Graphene and Fabrication of Top-Gated Field-Effect Transistors Using Transfer-Free Processes for Future LSIs

verfasst von : Daiyu Kondo, Shintaro Sato

Erschienen in: Frontiers of Graphene and Carbon Nanotubes

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-quality graphene synthesis by chemical vapor deposition (CVD) on a substrate has been achieved recently. Although synthesized graphene is often transferred to another substrate for electrical measurements, this transfer process may not be appropriate for applications using a large substrate, including large-scale integrated circuits (LSIs). Therefore, it is desirable that graphene channels are formed directly on a substrate without such transfer processes. Furthermore, graphene should be formed at low temperature to avoid possible adverse effects on the substrate.
In this study, thickness-controlled growth of few-layer and multilayer graphene was demonstrated at 650 °C by the thermal CVD method, and top-gated field-effect transistors (FETs) were fabricated directly on a large SiO2/Si substrate without using graphene-transfer processes. Graphene was synthesized on patterned Fe films. The iron was subsequently etched after both ends of the graphene were fixed by source and drain electrodes, leaving the graphene channels bridging the electrodes all over the substrate. Top-gated FETs were then made after covering the channels with HfO2. The fabricated devices exhibit ambipolar behavior and can sustain a high-density current. The growth mechanism of graphene was also investigated. In addition, a novel technique for synthesizing graphene directly on insulating substrate is also described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
3.
Zurück zum Zitat Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
4.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
5.
Zurück zum Zitat Lemme MC, Echtermeyer TJ, Baus M, Kurz H (2007) A graphene field effect device. IEEE Electron Device Lett 28:282CrossRef Lemme MC, Echtermeyer TJ, Baus M, Kurz H (2007) A graphene field effect device. IEEE Electron Device Lett 28:282CrossRef
6.
Zurück zum Zitat Lin Y-M, Jenkins KA, Valdes-Garcia A et al (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426CrossRef Lin Y-M, Jenkins KA, Valdes-Garcia A et al (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426CrossRef
7.
Zurück zum Zitat Farmer DB, Chiu H-Y, Lin Y-M et al (2009) Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett 9:4474–4478CrossRef Farmer DB, Chiu H-Y, Lin Y-M et al (2009) Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett 9:4474–4478CrossRef
8.
Zurück zum Zitat Kim S, Nah J, Jo I et al (2009) Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett 94(062107) Kim S, Nah J, Jo I et al (2009) Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett 94(062107)
9.
Zurück zum Zitat Cheng R, Bai J, Liao L et al (2012) High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS 109:11588–11592CrossRef Cheng R, Bai J, Liao L et al (2012) High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS 109:11588–11592CrossRef
10.
Zurück zum Zitat Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
11.
Zurück zum Zitat Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
12.
Zurück zum Zitat Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRef Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRef
13.
Zurück zum Zitat Piner R, Velamakanni A, Jung I et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Piner R, Velamakanni A, Jung I et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
14.
Zurück zum Zitat Ago H, Ito Y, Mizuta N et al (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407–7414CrossRef Ago H, Ito Y, Mizuta N et al (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407–7414CrossRef
15.
Zurück zum Zitat Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498CrossRef Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498CrossRef
16.
Zurück zum Zitat Kondo D, Sato S, Yagi K et al (2010) Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes. Appl Phys Express 3:025102CrossRef Kondo D, Sato S, Yagi K et al (2010) Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes. Appl Phys Express 3:025102CrossRef
17.
Zurück zum Zitat Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770CrossRef Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770CrossRef
18.
Zurück zum Zitat Cançado LG, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cançado LG, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
19.
Zurück zum Zitat Kondo D, Sato S, Yagi K et al (2011) The 72nd autumn meeting of The Japan Society of Applied Physics, Yamagata, Japan Kondo D, Sato S, Yagi K et al (2011) The 72nd autumn meeting of The Japan Society of Applied Physics, Yamagata, Japan
20.
Zurück zum Zitat Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy Catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160CrossRef Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy Catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160CrossRef
21.
Zurück zum Zitat Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522CrossRef Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522CrossRef
22.
Zurück zum Zitat Kondo D, Yagi K, Sato M et al (2011) Selective synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness. Chem Phys Lett 514:294–300CrossRef Kondo D, Yagi K, Sato M et al (2011) Selective synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness. Chem Phys Lett 514:294–300CrossRef
23.
Zurück zum Zitat Yamazaki Y, Wada M, Kitamura M et al (2012) Low-temperature graphene growth originating at crystalline facets of catalytic metal. Appl Phys Express 5:025101CrossRef Yamazaki Y, Wada M, Kitamura M et al (2012) Low-temperature graphene growth originating at crystalline facets of catalytic metal. Appl Phys Express 5:025101CrossRef
24.
Zurück zum Zitat Levendorf MP, Ruiz-Vargas CS, Garg S et al (2009) Transfer-free batch fabrication of single layer graphene transistors. Nano Lett 9(2009):4479–4483CrossRef Levendorf MP, Ruiz-Vargas CS, Garg S et al (2009) Transfer-free batch fabrication of single layer graphene transistors. Nano Lett 9(2009):4479–4483CrossRef
25.
Zurück zum Zitat Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low temperature nano-graphene synthesis over a dielectric insulator. ACS Nano 4:4206–4210CrossRef Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low temperature nano-graphene synthesis over a dielectric insulator. ACS Nano 4:4206–4210CrossRef
26.
Zurück zum Zitat Kondo D, Sato S, Yagi K et al (2011) 24th international microprocesses and nanotechnology conference, Kyoto, Japan Kondo D, Sato S, Yagi K et al (2011) 24th international microprocesses and nanotechnology conference, Kyoto, Japan
27.
Zurück zum Zitat Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525CrossRef Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525CrossRef
28.
Zurück zum Zitat Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRef Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRef
29.
Zurück zum Zitat Su C-Y, Lu A-Y, Wu C-Y et al (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11:3612–3616CrossRef Su C-Y, Lu A-Y, Wu C-Y et al (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11:3612–3616CrossRef
30.
Zurück zum Zitat Kato T, Hatakeyama R (2012) Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat Nanotechnol 145:1–6CrossRef Kato T, Hatakeyama R (2012) Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat Nanotechnol 145:1–6CrossRef
31.
Zurück zum Zitat Kondo D, Nakano Y, Zhou B et al (2013) Intercalated multi-layer graphene grown by CVD for LSI interconnects. IEEE International Interconnect Technology Conference, Kyoto, Japan Kondo D, Nakano Y, Zhou B et al (2013) Intercalated multi-layer graphene grown by CVD for LSI interconnects. IEEE International Interconnect Technology Conference, Kyoto, Japan
Metadaten
Titel
Low-Temperature Synthesis of Graphene and Fabrication of Top-Gated Field-Effect Transistors Using Transfer-Free Processes for Future LSIs
verfasst von
Daiyu Kondo
Shintaro Sato
Copyright-Jahr
2015
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55372-4_6

Neuer Inhalt