Skip to main content
Erschienen in: Journal of Materials Science 19/2018

25.06.2018 | Chemical routes to materials

Low-temperature treatment for preservation and separation of graphene dispersions

verfasst von: Lei Liu, Zhigang Shen, Xiaojing Zhang, Shulin Ma

Erschienen in: Journal of Materials Science | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene nanosheets prepared by liquid-phase exfoliation tend to aggregate easily and irreversibly in most solvents due to van der Waals forces and high surface energy. This article presents a facile, low-cost and novel approach for the preservation and separation of graphene dispersions by adjusting the temperature and solvent. Using IPA-water mixtures can realize green production of graphene nanosheets, and different physicochemical parameters are achievable by changing the proportion of components. Two valid methods for improving stability were discussed in depth: low-temperature storage as a liquid and as a solid. When graphene dispersions are stored in a liquid phase, agglomeration of nanosheets in mixed solvents can be effectively retarded by strong viscous resistance induced by low temperatures. Frozen powder prepared by liquid nitrogen maintains the nanosheets in a dispersed state and is suitable for long-term preservation in the solid phase in ordinary freezers. Furthermore, rapid separation of graphene nanosheets is a challenging problem that retards industrial production. Flocculation induced by slow freezing can accelerate solid–liquid separation, offering a novel approach to obtain easily dispersed powders. Various patterns could be printed on paper and poly(ethylene terephthalate) by a simple and low-cost screen printing technique using the graphene powder, providing a new platform for scalable, low-cost printing of electronics. Consequently, this scalable and simple strategy can be satisfactorily applied to the preservation and separation of graphene and is expected to extend to other nanomaterials, including MoS2 and h-BN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
2.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
3.
Zurück zum Zitat Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51CrossRef Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51CrossRef
4.
Zurück zum Zitat Brownson DAC, Varey SA, Hussain F et al (2014) Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6:1607–1621CrossRef Brownson DAC, Varey SA, Hussain F et al (2014) Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6:1607–1621CrossRef
6.
Zurück zum Zitat Jia X, Campos-Delgado J, Terrones M et al (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3:86–95CrossRef Jia X, Campos-Delgado J, Terrones M et al (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3:86–95CrossRef
7.
Zurück zum Zitat Abdelkader AM, Cooper AJ, Dryfe RAW et al (2015) How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7:6944–6956CrossRef Abdelkader AM, Cooper AJ, Dryfe RAW et al (2015) How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7:6944–6956CrossRef
8.
Zurück zum Zitat Fang W, Hsu AL, Song Y et al (2015) A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale 7:20335–20351CrossRef Fang W, Hsu AL, Song Y et al (2015) A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale 7:20335–20351CrossRef
10.
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef
11.
Zurück zum Zitat Liu L, Shen Z, Yi M et al (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4:36464–36470CrossRef Liu L, Shen Z, Yi M et al (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4:36464–36470CrossRef
12.
Zurück zum Zitat Choi W, Lahiri I, Seelaboyina R et al (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71CrossRef Choi W, Lahiri I, Seelaboyina R et al (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71CrossRef
13.
Zurück zum Zitat Wei D, Kivioja J (2013) Graphene for energy solutions and its industrialization. Nanoscale 5:10108–10126CrossRef Wei D, Kivioja J (2013) Graphene for energy solutions and its industrialization. Nanoscale 5:10108–10126CrossRef
15.
Zurück zum Zitat Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398CrossRef Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398CrossRef
16.
Zurück zum Zitat Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef
17.
Zurück zum Zitat Wu Z, Liu J, Li Y et al (2015) Self-assembly of nanoclusters into Mono-Few-, and multilayered sheets via dipole-induced asymmetric van der waals attraction. ACS Nano 9:6315–6323CrossRef Wu Z, Liu J, Li Y et al (2015) Self-assembly of nanoclusters into Mono-Few-, and multilayered sheets via dipole-induced asymmetric van der waals attraction. ACS Nano 9:6315–6323CrossRef
18.
Zurück zum Zitat Lee YJ, Huang L, Wang H et al (2015) Structural rearrangement and dispersion of functionalized graphene sheets in aqueous solutions. Colloids Interface Sci Commun 8:1–5CrossRef Lee YJ, Huang L, Wang H et al (2015) Structural rearrangement and dispersion of functionalized graphene sheets in aqueous solutions. Colloids Interface Sci Commun 8:1–5CrossRef
19.
Zurück zum Zitat Su Y, Yang G, Lu K et al (2017) Colloidal properties and stability of aqueous suspensions of few-layer graphene: importance of graphene concentration. Environ Pollut 220:469–477CrossRef Su Y, Yang G, Lu K et al (2017) Colloidal properties and stability of aqueous suspensions of few-layer graphene: importance of graphene concentration. Environ Pollut 220:469–477CrossRef
20.
Zurück zum Zitat Texter J (2014) Graphene dispersions. Curr Opin Colloid Interface Sci 19:163–174CrossRef Texter J (2014) Graphene dispersions. Curr Opin Colloid Interface Sci 19:163–174CrossRef
21.
Zurück zum Zitat Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22:12435–12452CrossRef Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22:12435–12452CrossRef
22.
Zurück zum Zitat Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21:3455–3461CrossRef Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21:3455–3461CrossRef
23.
Zurück zum Zitat Shen Z, Li J, Yi M et al (2011) Preparation of graphene by jet cavitation. Nanotechnology 22:365306CrossRef Shen Z, Li J, Yi M et al (2011) Preparation of graphene by jet cavitation. Nanotechnology 22:365306CrossRef
24.
Zurück zum Zitat Hernandez Y, Lotya M, Rickard D et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213CrossRef Hernandez Y, Lotya M, Rickard D et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213CrossRef
25.
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef
26.
Zurück zum Zitat Zhou KG, Mao NN, Wang HX et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842CrossRef Zhou KG, Mao NN, Wang HX et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842CrossRef
27.
Zurück zum Zitat Yi M, Shen Z, Ma S et al (2012) A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J Nanopart Res 14:1–9CrossRef Yi M, Shen Z, Ma S et al (2012) A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J Nanopart Res 14:1–9CrossRef
28.
Zurück zum Zitat Shen ZG, Li JZ, Yi M et al (2011) Preparation of graphene by jet cavitation. Nanotechnology 22:365306CrossRef Shen ZG, Li JZ, Yi M et al (2011) Preparation of graphene by jet cavitation. Nanotechnology 22:365306CrossRef
29.
Zurück zum Zitat Ibrahem MA, T-w Lan, Huang JK et al (2013) High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv 3:13193–13202CrossRef Ibrahem MA, T-w Lan, Huang JK et al (2013) High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv 3:13193–13202CrossRef
30.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC et al (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef Kudin KN, Ozbas B, Schniepp HC et al (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef
31.
Zurück zum Zitat O’Neill A, Khan U, Nirmalraj PN et al (2011) Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C 115:5422–5428CrossRef O’Neill A, Khan U, Nirmalraj PN et al (2011) Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C 115:5422–5428CrossRef
32.
Zurück zum Zitat Hansen CM (2012) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton Hansen CM (2012) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton
33.
Zurück zum Zitat Hong J-Y, Jang J (2012) Highly stable, concentrated dispersions of graphene oxide sheets and their electro-responsive characteristics. Soft Matter 8:7348–7350CrossRef Hong J-Y, Jang J (2012) Highly stable, concentrated dispersions of graphene oxide sheets and their electro-responsive characteristics. Soft Matter 8:7348–7350CrossRef
34.
Zurück zum Zitat Walter J, Nacken TJ, Damm C et al (2015) Graphene oxide: determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation (small 7/2015). Small 11:814–825CrossRef Walter J, Nacken TJ, Damm C et al (2015) Graphene oxide: determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation (small 7/2015). Small 11:814–825CrossRef
35.
Zurück zum Zitat Silvera Batista CA, Zheng M, Khripin CY et al (2014) Rod hydrodynamics and length distributions of single-wall carbon nanotubes using analytical ultracentrifugation. Langmuir 30:4895–4904CrossRef Silvera Batista CA, Zheng M, Khripin CY et al (2014) Rod hydrodynamics and length distributions of single-wall carbon nanotubes using analytical ultracentrifugation. Langmuir 30:4895–4904CrossRef
36.
Zurück zum Zitat Tirado MM, Martínez CL, Torre JG (1984) Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J Chem Phys 81:2047–2052CrossRef Tirado MM, Martínez CL, Torre JG (1984) Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J Chem Phys 81:2047–2052CrossRef
37.
Zurück zum Zitat Steinberger R (1999) Chemical properties handbook. World Pub. Co., Beijing Steinberger R (1999) Chemical properties handbook. World Pub. Co., Beijing
38.
Zurück zum Zitat Seeton CJ (2006) Viscosity–temperature correlation for liquids. Tribol Lett 22:67–78CrossRef Seeton CJ (2006) Viscosity–temperature correlation for liquids. Tribol Lett 22:67–78CrossRef
39.
Zurück zum Zitat Aladko L, Manakov AY, Ogienko A et al (2009) New data on phase diagram and clathrate formation in the system water–isopropyl alcohol. J Incl Phenom Macrocycl Chem 63:151–157CrossRef Aladko L, Manakov AY, Ogienko A et al (2009) New data on phase diagram and clathrate formation in the system water–isopropyl alcohol. J Incl Phenom Macrocycl Chem 63:151–157CrossRef
40.
Zurück zum Zitat Chen Z, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424CrossRef Chen Z, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424CrossRef
41.
Zurück zum Zitat Hong J-Y, Yun S, Wie JJ et al (2016) Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale 8:12900–12909CrossRef Hong J-Y, Yun S, Wie JJ et al (2016) Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale 8:12900–12909CrossRef
Metadaten
Titel
Low-temperature treatment for preservation and separation of graphene dispersions
verfasst von
Lei Liu
Zhigang Shen
Xiaojing Zhang
Shulin Ma
Publikationsdatum
25.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2572-1

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science 19/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.