Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging

verfasst von : Enrico Rampazzo, Luca Prodi, Luca Petrizza, Nelsi Zaccheroni

Erschienen in: Light-Responsive Nanostructured Systems for Applications in Nanomedicine

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The field of nanoparticles has successfully merged with imaging to optimize contrast agents for many detection techniques. This combination has yielded highly positive results, especially in optical and magnetic imaging, leading to diagnostic methods that are now close to clinical use. Biological sciences have been taking advantage of luminescent labels for many years and the development of luminescent nanoprobes has helped definitively in making the crucial step forward in in vivo applications. To this end, suitable probes should present excitation and emission within the NIR region where tissues have minimal absorbance. Among several nanomaterials engineered with this aim, including noble metal, lanthanide, and carbon nanoparticles and quantum dots, we have focused our attention here on luminescent silica nanoparticles. Many interesting results have already been obtained with nanoparticles containing only one kind of photophysically active moiety. However, the presence of different emitting species in a single nanoparticle can lead to diverse properties including cooperative behaviours. We present here the state of the art in the field of silica luminescent nanoparticles exploiting collective processes to obtain ultra-bright units suitable as contrast agents in optical imaging and optical sensing and for other high sensitivity applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hussain T, Nguyen QT (2014) Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 66:90–100CrossRef Hussain T, Nguyen QT (2014) Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 66:90–100CrossRef
2.
Zurück zum Zitat Tirotta I et al (2015) (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 115(2):1106–1129CrossRef Tirotta I et al (2015) (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 115(2):1106–1129CrossRef
3.
Zurück zum Zitat Abramczyk H, Brozek-Pluska B (2013) Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 113(8):5766–5781CrossRef Abramczyk H, Brozek-Pluska B (2013) Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev 113(8):5766–5781CrossRef
4.
Zurück zum Zitat Cutler CS et al (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883CrossRef Cutler CS et al (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883CrossRef
5.
Zurück zum Zitat Verwilst P et al (2015) Recent advances in Gd-chelate based bimodal optical/MRI contrast agents. Chem Soc Rev 44(7):1791–1806CrossRef Verwilst P et al (2015) Recent advances in Gd-chelate based bimodal optical/MRI contrast agents. Chem Soc Rev 44(7):1791–1806CrossRef
6.
Zurück zum Zitat Nie L, Chen X (2014) Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 43(20):7132–7170CrossRef Nie L, Chen X (2014) Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 43(20):7132–7170CrossRef
7.
Zurück zum Zitat Zhu L, Ploessl K, Kung HF (2014) PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 43(19):6683–6691CrossRef Zhu L, Ploessl K, Kung HF (2014) PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 43(19):6683–6691CrossRef
8.
Zurück zum Zitat Montalti M et al (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev, 43(12):4243–4268CrossRef Montalti M et al (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev, 43(12):4243–4268CrossRef
9.
Zurück zum Zitat Merian J et al (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17(5):5564–5591CrossRef Merian J et al (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17(5):5564–5591CrossRef
10.
Zurück zum Zitat Buckland J (2015) Experimental arthritis: in vivo noninvasive molecular optical imaging of disease. Nat Rev Rheumatol 11(5):258CrossRef Buckland J (2015) Experimental arthritis: in vivo noninvasive molecular optical imaging of disease. Nat Rev Rheumatol 11(5):258CrossRef
11.
Zurück zum Zitat Broome AM et al (2015) Optical imaging of targeted beta-galactosidase in brain tumors to detect EGFR levels. Bioconjug Chem 26(4):660–668CrossRef Broome AM et al (2015) Optical imaging of targeted beta-galactosidase in brain tumors to detect EGFR levels. Bioconjug Chem 26(4):660–668CrossRef
12.
Zurück zum Zitat Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77(1):13–19CrossRef Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77(1):13–19CrossRef
13.
Zurück zum Zitat Rocha U et al (2014) Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window. Small 10(6):1141–1154CrossRef Rocha U et al (2014) Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window. Small 10(6):1141–1154CrossRef
14.
Zurück zum Zitat Bi S et al (2015) A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer. Nanoscale 7(8):3745–3753CrossRef Bi S et al (2015) A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer. Nanoscale 7(8):3745–3753CrossRef
15.
Zurück zum Zitat Nepomnyashchii AB, Bard AJ (2012) Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes. Acc Chem Res 45(11):1844–1853CrossRef Nepomnyashchii AB, Bard AJ (2012) Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes. Acc Chem Res 45(11):1844–1853CrossRef
16.
Zurück zum Zitat Wu P et al (2014) Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev 114(21):11027–11059CrossRef Wu P et al (2014) Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev 114(21):11027–11059CrossRef
17.
Zurück zum Zitat Di Fusco M et al (2015) Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Anal Bioanal Chem 407(6):1567–1576CrossRef Di Fusco M et al (2015) Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Anal Bioanal Chem 407(6):1567–1576CrossRef
18.
Zurück zum Zitat Gong H et al (2014) Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv Funct Mater 24(41):6492–6502CrossRef Gong H et al (2014) Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv Funct Mater 24(41):6492–6502CrossRef
19.
Zurück zum Zitat Lv RC et al (2015) Multifunctional anticancer platform for multimodal imaging and visible light driven photodynamic/photothermal therapy. Chem Mater 27(5):1751–1763CrossRef Lv RC et al (2015) Multifunctional anticancer platform for multimodal imaging and visible light driven photodynamic/photothermal therapy. Chem Mater 27(5):1751–1763CrossRef
20.
Zurück zum Zitat Yi XM et al (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 9:1347–1365CrossRef Yi XM et al (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 9:1347–1365CrossRef
21.
Zurück zum Zitat Wang R, Zhang F (2014) NIR luminescent nanomaterials for biomedical imaging. J Mater Chem B 2(17):2422–2443CrossRef Wang R, Zhang F (2014) NIR luminescent nanomaterials for biomedical imaging. J Mater Chem B 2(17):2422–2443CrossRef
22.
Zurück zum Zitat Wu H et al (2014) Self-assembly-induced near-infrared fluorescent nanoprobes for effective tumor molecular imaging. J Mater Chem B 2(32):5302–5308CrossRef Wu H et al (2014) Self-assembly-induced near-infrared fluorescent nanoprobes for effective tumor molecular imaging. J Mater Chem B 2(32):5302–5308CrossRef
23.
Zurück zum Zitat Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43(18):6570–6597CrossRef Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43(18):6570–6597CrossRef
24.
Zurück zum Zitat Liberman A et al (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158CrossRef Liberman A et al (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158CrossRef
25.
Zurück zum Zitat Cassette E et al (2013) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 65(5):719–731CrossRef Cassette E et al (2013) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 65(5):719–731CrossRef
26.
Zurück zum Zitat Jing LH et al (2014) Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater 26(37):6367–6386CrossRef Jing LH et al (2014) Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater 26(37):6367–6386CrossRef
27.
Zurück zum Zitat Vivero-Escoto JL, Huxford-Phillips RC, Lin WB (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685CrossRef Vivero-Escoto JL, Huxford-Phillips RC, Lin WB (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685CrossRef
28.
Zurück zum Zitat Bonitatibus PJ et al (2012) Preclinical assessment of a Zwitterionic tantalum oxide nanoparticle X-ray contrast agent. ACS Nano 6(8):6650–6658CrossRef Bonitatibus PJ et al (2012) Preclinical assessment of a Zwitterionic tantalum oxide nanoparticle X-ray contrast agent. ACS Nano 6(8):6650–6658CrossRef
29.
Zurück zum Zitat Caltagirone C et al (2014) Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 44(14):4645–4671CrossRef Caltagirone C et al (2014) Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 44(14):4645–4671CrossRef
30.
Zurück zum Zitat Toy R et al (2014) Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 76:79–97CrossRef Toy R et al (2014) Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 76:79–97CrossRef
31.
Zurück zum Zitat Li CH, Hu JM, Liu SY (2012) Engineering FRET processes within synthetic polymers, polymeric assemblies and nanoparticles via modulating spatial distribution of fluorescent donors and acceptors. Soft Matter 8(27):7096–7102CrossRef Li CH, Hu JM, Liu SY (2012) Engineering FRET processes within synthetic polymers, polymeric assemblies and nanoparticles via modulating spatial distribution of fluorescent donors and acceptors. Soft Matter 8(27):7096–7102CrossRef
32.
Zurück zum Zitat Ray PC et al (2014) Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem Soc Rev 43(17):6370–6404CrossRef Ray PC et al (2014) Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem Soc Rev 43(17):6370–6404CrossRef
33.
Zurück zum Zitat Genovese D et al (2014) Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale 6(6):3022–3036CrossRef Genovese D et al (2014) Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale 6(6):3022–3036CrossRef
34.
Zurück zum Zitat Genovese D et al (2013) Prevention of self-quenching in fluorescent silica nanoparticles by efficient energy transfer. Angew Chem Int Ed 52(23):5965–5968CrossRef Genovese D et al (2013) Prevention of self-quenching in fluorescent silica nanoparticles by efficient energy transfer. Angew Chem Int Ed 52(23):5965–5968CrossRef
35.
Zurück zum Zitat Biffi S et al (2014) Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging. Rsc Adv 4(35):18278–18285CrossRef Biffi S et al (2014) Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging. Rsc Adv 4(35):18278–18285CrossRef
36.
Zurück zum Zitat Meng HM et al (2015) Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Anal Chem 87(8):4448–4454CrossRef Meng HM et al (2015) Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Anal Chem 87(8):4448–4454CrossRef
37.
Zurück zum Zitat Helle M et al (2013) Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping. ACS Nano 7(10):8645–8657CrossRef Helle M et al (2013) Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping. ACS Nano 7(10):8645–8657CrossRef
38.
Zurück zum Zitat Jeon YH et al (2010) In vivo imaging of sentinel nodes using fluorescent silica nanoparticles in living mice. Mol Imaging Biol 12(2):155–162CrossRef Jeon YH et al (2010) In vivo imaging of sentinel nodes using fluorescent silica nanoparticles in living mice. Mol Imaging Biol 12(2):155–162CrossRef
39.
Zurück zum Zitat Bonacchi S et al (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50(18):4056–4066CrossRef Bonacchi S et al (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50(18):4056–4066CrossRef
40.
Zurück zum Zitat Montalti M et al (2013) Luminescent chemosensors based on silica nanoparticles for the detection of ionic species. New J Chem 37(1):28–34CrossRef Montalti M et al (2013) Luminescent chemosensors based on silica nanoparticles for the detection of ionic species. New J Chem 37(1):28–34CrossRef
41.
Zurück zum Zitat Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRef Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRef
42.
Zurück zum Zitat Van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12):2921–2931CrossRef Van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12):2921–2931CrossRef
43.
Zurück zum Zitat Wang J et al (2011) Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces 3(5):1538–1544CrossRef Wang J et al (2011) Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces 3(5):1538–1544CrossRef
44.
Zurück zum Zitat Larson DR et al (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20(8):2677–2684CrossRef Larson DR et al (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20(8):2677–2684CrossRef
45.
Zurück zum Zitat Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362CrossRef Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362CrossRef
46.
Zurück zum Zitat Zanarini S et al (2009) Iridium doped silica − PEG nanoparticles: enabling electrochemiluminescence of neutral complexes in aqueous media. J Am Chem Soc 131(40):14208–14209CrossRef Zanarini S et al (2009) Iridium doped silica − PEG nanoparticles: enabling electrochemiluminescence of neutral complexes in aqueous media. J Am Chem Soc 131(40):14208–14209CrossRef
47.
Zurück zum Zitat Yong KT et al (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672CrossRef Yong KT et al (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672CrossRef
48.
Zurück zum Zitat Bagwe RP et al (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342CrossRef Bagwe RP et al (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342CrossRef
49.
Zurück zum Zitat Kim S et al (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675CrossRef Kim S et al (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675CrossRef
50.
Zurück zum Zitat Kim S et al (2007) Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging. Chem Mater 19(23):5650–5656CrossRef Kim S et al (2007) Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging. Chem Mater 19(23):5650–5656CrossRef
51.
Zurück zum Zitat Selvestrel F et al (2013) Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale 5(13):6106–6116CrossRef Selvestrel F et al (2013) Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale 5(13):6106–6116CrossRef
52.
Zurück zum Zitat Kumar R et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456CrossRef Kumar R et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456CrossRef
53.
Zurück zum Zitat Kumar R et al (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4(2):699–708CrossRef Kumar R et al (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4(2):699–708CrossRef
54.
Zurück zum Zitat Seddon A, Li Ou D (1998) CdSe quantum dot doped amine-functionalized ormosils. J Solgel Sci Technol 13(1–3):623–628CrossRef Seddon A, Li Ou D (1998) CdSe quantum dot doped amine-functionalized ormosils. J Solgel Sci Technol 13(1–3):623–628CrossRef
55.
Zurück zum Zitat Law W-C et al (2008) Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J Phys Chem C 112(21):7972–7977CrossRef Law W-C et al (2008) Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J Phys Chem C 112(21):7972–7977CrossRef
56.
Zurück zum Zitat Ma K et al (2013) Controlling growth of ultrasmall sub-10 nm fluorescent mesoporous silica nanoparticles. Chem Mater 25(5):677–691CrossRef Ma K et al (2013) Controlling growth of ultrasmall sub-10 nm fluorescent mesoporous silica nanoparticles. Chem Mater 25(5):677–691CrossRef
57.
Zurück zum Zitat Rampazzo E et al (2010) Energy transfer from silica core − surfactant shell nanoparticles to hosted molecular fluorophores. J Phys Chem B 114(45):14605–14613CrossRef Rampazzo E et al (2010) Energy transfer from silica core − surfactant shell nanoparticles to hosted molecular fluorophores. J Phys Chem B 114(45):14605–14613CrossRef
58.
Zurück zum Zitat Chi F et al (2010) Size-tunable and functional core − shell structured silica nanoparticles for drug release. J Phys Chem C 114(6):2519–2523CrossRef Chi F et al (2010) Size-tunable and functional core − shell structured silica nanoparticles for drug release. J Phys Chem C 114(6):2519–2523CrossRef
59.
Zurück zum Zitat Liu J et al (2009) Tunable assembly of organosilica hollow nanospheres. J Phys Chem C 114(2):953–961CrossRef Liu J et al (2009) Tunable assembly of organosilica hollow nanospheres. J Phys Chem C 114(2):953–961CrossRef
60.
Zurück zum Zitat Rampazzo E et al (2012) Multicolor core/shell silica nanoparticles for in vivo and ex vivo imaging. Nanoscale 4(3):824–830CrossRef Rampazzo E et al (2012) Multicolor core/shell silica nanoparticles for in vivo and ex vivo imaging. Nanoscale 4(3):824–830CrossRef
61.
Zurück zum Zitat Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946CrossRef Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946CrossRef
62.
Zurück zum Zitat Gallagher D, Ring TA (1989) Chimia 43:298 Gallagher D, Ring TA (1989) Chimia 43:298
63.
Zurück zum Zitat Pedone A et al (2013) Understanding the photophysical properties of coumarin-based Pluronic-silica (PluS) nanoparticles by means of time-resolved emission spectroscopy and accurate TDDFT/stochastic calculations. Phys Chem Chem Phys 15(29):12360–12372CrossRef Pedone A et al (2013) Understanding the photophysical properties of coumarin-based Pluronic-silica (PluS) nanoparticles by means of time-resolved emission spectroscopy and accurate TDDFT/stochastic calculations. Phys Chem Chem Phys 15(29):12360–12372CrossRef
64.
Zurück zum Zitat Valenti G et al (2012) A versatile strategy for tuning the color of electrochemiluminescence using silica nanoparticles. Chem Commun 48(35):4187–4189CrossRef Valenti G et al (2012) A versatile strategy for tuning the color of electrochemiluminescence using silica nanoparticles. Chem Commun 48(35):4187–4189CrossRef
65.
Zurück zum Zitat Rampazzo E et al (2011) A versatile strategy for signal amplification based on core/shell silica nanoparticles. Chem Eur J 17(48):13429–13432CrossRef Rampazzo E et al (2011) A versatile strategy for signal amplification based on core/shell silica nanoparticles. Chem Eur J 17(48):13429–13432CrossRef
66.
Zurück zum Zitat Genovese D et al (2011) Reversible photoswitching of dye-doped core-shell nanoparticles. Chem Commun 47(39):10975–10977CrossRef Genovese D et al (2011) Reversible photoswitching of dye-doped core-shell nanoparticles. Chem Commun 47(39):10975–10977CrossRef
67.
Zurück zum Zitat Soster M et al (2012) Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. Int J Nanomedicine 7:4797–4807 Soster M et al (2012) Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. Int J Nanomedicine 7:4797–4807
68.
Zurück zum Zitat Rampazzo E et al (2013) Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale 5(17):7897–7905CrossRef Rampazzo E et al (2013) Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale 5(17):7897–7905CrossRef
69.
Zurück zum Zitat Verhaegh NAM, Blaaderen AV (1994) Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10(5):1427–1438CrossRef Verhaegh NAM, Blaaderen AV (1994) Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10(5):1427–1438CrossRef
70.
Zurück zum Zitat Smith JE et al (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79(8):3075–3082CrossRef Smith JE et al (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79(8):3075–3082CrossRef
71.
Zurück zum Zitat Wang L et al (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18(2):297–301CrossRef Wang L et al (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18(2):297–301CrossRef
72.
Zurück zum Zitat Wang L, Yang CY, Tan WH (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5(1):37–43CrossRef Wang L, Yang CY, Tan WH (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5(1):37–43CrossRef
73.
Zurück zum Zitat Chen XL et al (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81(16):7009–7014CrossRef Chen XL et al (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81(16):7009–7014CrossRef
74.
Zurück zum Zitat He XX et al (2012) Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Anal Chem 84(21):9056–9064 He XX et al (2012) Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Anal Chem 84(21):9056–9064
75.
Zurück zum Zitat Gutwein LG et al (2012) Fractionated photothermal antitumor therapy with multidye nanoparticles. Int J Nanomedicine 7:351–357 Gutwein LG et al (2012) Fractionated photothermal antitumor therapy with multidye nanoparticles. Int J Nanomedicine 7:351–357
76.
Zurück zum Zitat Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29(1):20–31CrossRef Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29(1):20–31CrossRef
77.
Zurück zum Zitat Bonacchi S et al (2011) Luminescent chemosensors based on silica nanoparticles. Top Curr Chem 300:93–138CrossRef Bonacchi S et al (2011) Luminescent chemosensors based on silica nanoparticles. Top Curr Chem 300:93–138CrossRef
78.
Zurück zum Zitat Lodeiro C et al (2010) Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 39(8):2948–2976CrossRef Lodeiro C et al (2010) Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 39(8):2948–2976CrossRef
79.
Zurück zum Zitat Montalti M et al (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 43(12):4243–4268CrossRef Montalti M et al (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 43(12):4243–4268CrossRef
80.
Zurück zum Zitat Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging (2008, 108:1517). Chem Rev 108(10):4328CrossRef Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging (2008, 108:1517). Chem Rev 108(10):4328CrossRef
81.
Zurück zum Zitat Doussineau T et al (2010) On the design of fluorescent ratiometric nanosensors. Chem Eur J 16(34):10290–10299CrossRef Doussineau T et al (2010) On the design of fluorescent ratiometric nanosensors. Chem Eur J 16(34):10290–10299CrossRef
82.
Zurück zum Zitat Bazzicalupi C et al (2013) Multimodal use of new coumarin-based fluorescent chemosensors: towards highly selective optical sensors for Hg2+ probing. Chem Eur J 19(43):14639–14653CrossRef Bazzicalupi C et al (2013) Multimodal use of new coumarin-based fluorescent chemosensors: towards highly selective optical sensors for Hg2+ probing. Chem Eur J 19(43):14639–14653CrossRef
83.
Zurück zum Zitat Ambrosi G et al (2015) PluS nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for Ag(I) and Hg(II) in water. Sens Actuat B Chem 207:1035–1044CrossRef Ambrosi G et al (2015) PluS nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for Ag(I) and Hg(II) in water. Sens Actuat B Chem 207:1035–1044CrossRef
84.
Zurück zum Zitat Arca M et al (2014) A fluorescent ratiometric nanosized system for the determination of Pd-II in water. Chem Commun 50(96):15259–15262CrossRef Arca M et al (2014) A fluorescent ratiometric nanosized system for the determination of Pd-II in water. Chem Commun 50(96):15259–15262CrossRef
85.
Zurück zum Zitat Qin Y et al (2013) Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn2+. ACS Chem Biol 8(11):2366–2371CrossRef Qin Y et al (2013) Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn2+. ACS Chem Biol 8(11):2366–2371CrossRef
86.
Zurück zum Zitat Tsai Y-T et al (2014) Real-time noninvasive monitoring of in vivo inflammatory responses using a pH ratiometric fluorescence imaging probe. Adv Healthc Mater 3(2):221–229CrossRef Tsai Y-T et al (2014) Real-time noninvasive monitoring of in vivo inflammatory responses using a pH ratiometric fluorescence imaging probe. Adv Healthc Mater 3(2):221–229CrossRef
87.
Zurück zum Zitat Burns A et al (2006) Core/shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2(6):723–726CrossRef Burns A et al (2006) Core/shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2(6):723–726CrossRef
88.
Zurück zum Zitat Chen Y-P et al (2012) Surface charge effect in intracellular localization of mesoporous silica nanoparticles as probed by fluorescent ratiometric pH imaging. Rsc Adv 2(3):968–973CrossRef Chen Y-P et al (2012) Surface charge effect in intracellular localization of mesoporous silica nanoparticles as probed by fluorescent ratiometric pH imaging. Rsc Adv 2(3):968–973CrossRef
89.
Zurück zum Zitat Doussineau T, Trupp S, Mohr GJ (2009) Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J Colloid Interface Sci 339(1):266–270CrossRef Doussineau T, Trupp S, Mohr GJ (2009) Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J Colloid Interface Sci 339(1):266–270CrossRef
90.
Zurück zum Zitat Peng J et al (2007) Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal Bioanal Chem 388(3):645–654CrossRef Peng J et al (2007) Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal Bioanal Chem 388(3):645–654CrossRef
91.
Zurück zum Zitat Wu S et al (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47(40):11276–11278CrossRef Wu S et al (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47(40):11276–11278CrossRef
92.
Zurück zum Zitat Meng Q et al (2010) Multifunctional mesoporous silica material used for detection and adsorption of Cu2+ in aqueous solution and biological applications in vitro and in vivo. Adv Funct Mater 20(12):1903–1909CrossRef Meng Q et al (2010) Multifunctional mesoporous silica material used for detection and adsorption of Cu2+ in aqueous solution and biological applications in vitro and in vivo. Adv Funct Mater 20(12):1903–1909CrossRef
93.
Zurück zum Zitat Seo S et al (2010) Fluorescein-functionalized silica nanoparticles as a selective fluorogenic chemosensor for Cu2+ in living cells. Eur J Inorg Chem 2010(6):843–847CrossRef Seo S et al (2010) Fluorescein-functionalized silica nanoparticles as a selective fluorogenic chemosensor for Cu2+ in living cells. Eur J Inorg Chem 2010(6):843–847CrossRef
94.
Zurück zum Zitat Zeng L et al (2005) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128(1):10–11CrossRef Zeng L et al (2005) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128(1):10–11CrossRef
95.
Zurück zum Zitat Bau L, Tecilla P, Mancin F (2011) Sensing with fluorescent nanoparticles. Nanoscale 3(1):121–133CrossRef Bau L, Tecilla P, Mancin F (2011) Sensing with fluorescent nanoparticles. Nanoscale 3(1):121–133CrossRef
96.
Zurück zum Zitat Bae SW et al (2010) Apoptotic cell imaging using phosphatidylserine-specific receptor-conjugated Ru(bpy)32 + -doped silica nanoparticles. Small 6(14):1499–1503CrossRef Bae SW et al (2010) Apoptotic cell imaging using phosphatidylserine-specific receptor-conjugated Ru(bpy)32 + -doped silica nanoparticles. Small 6(14):1499–1503CrossRef
97.
Zurück zum Zitat Huang X et al (2012) Multiplex imaging of an intracellular proteolytic cascade by using a broad-spectrum nanoquencher. Angew Chem Int Ed 51(7):1625–1630CrossRef Huang X et al (2012) Multiplex imaging of an intracellular proteolytic cascade by using a broad-spectrum nanoquencher. Angew Chem Int Ed 51(7):1625–1630CrossRef
Metadaten
Titel
Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging
verfasst von
Enrico Rampazzo
Luca Prodi
Luca Petrizza
Nelsi Zaccheroni
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-22942-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.