Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

11.08.2020

Lung Nodule Classification on Computed Tomography Images Using Deep Learning

verfasst von: Amrita Naik, Damodar Reddy Edla

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lung Cancer is the most fast growing cancer around the world and is mostly diagnosed at an advanced stage. Due to enhancement in medical imaging modalities like Computed Tomography (CT) scans there is a need for computer aided detection system to classify the lung nodule into benign and malignant type with maximum accuracy to prevent delay in diagnosis. Many state-of-art methods used so far classify the images by applying machine learning algorithms on manually extracted features from imaging modalities. But in the recent years many deep learning techniques are being used in classification of lung nodule and have shown promising results when compared to other state-of-art methods. In this paper we have surveyed around 108 research papers to focus on the contribution of deep learning methodologies in detection of malignant tumor in Lung CT scan. This paper discusses variation applied on deep learning architecture to improve the accuracy of the classification system and a comprehensive comparison between various deep learning methods used so far for lung nodule classification. After reviewing each paper, this survey also presents challenges and opportunities in classifying lung nodule by using advanced deep learning strategies. The paper concludes with the need to address new issues in nodule classification with an aim to detect the malignant lesion at an early stage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians, 68, 394–424. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians, 68, 394–424.
2.
Zurück zum Zitat Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917.
3.
Zurück zum Zitat Cheng, T.-Y. D., Cramb, S. M., Baade, P. D., Youlden, D. R., Nwogu, C., & Reid, M. E. (2016). The international epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. Journal of Thoracic Oncology, 11(10), 1653–1671. Cheng, T.-Y. D., Cramb, S. M., Baade, P. D., Youlden, D. R., Nwogu, C., & Reid, M. E. (2016). The international epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. Journal of Thoracic Oncology, 11(10), 1653–1671.
4.
Zurück zum Zitat Ellis, P. M., & Vandermeer, R. (2011). Delays in the diagnosis of lung cancer. Journal of Thoraic Disease, 3(3), 183–188. Ellis, P. M., & Vandermeer, R. (2011). Delays in the diagnosis of lung cancer. Journal of Thoraic Disease, 3(3), 183–188.
5.
Zurück zum Zitat Kenfield, S. A., Wei, E. K., Stampfer, M. J., et al. (2008). Comparison of aspects of smoking among the four histological types of lung cancer. Tobacco Control, 17, 198–204. Kenfield, S. A., Wei, E. K., Stampfer, M. J., et al. (2008). Comparison of aspects of smoking among the four histological types of lung cancer. Tobacco Control, 17, 198–204.
6.
Zurück zum Zitat Denisenko, T. V., Budkevich, I. N., & Zhivotovsky, B. (2018). Cell death-based treatment of lungadenocarcinoma. Cell Death and Disease, 9, 117. Denisenko, T. V., Budkevich, I. N., & Zhivotovsky, B. (2018). Cell death-based treatment of lungadenocarcinoma. Cell Death and Disease, 9, 117.
7.
Zurück zum Zitat Doll, R., & Hill, A. B. (1999). Smoking and carcinoma of the lung. Preliminary report. 1950. Bulletin of the World Health Organization, 77(1), 84–93. Doll, R., & Hill, A. B. (1999). Smoking and carcinoma of the lung. Preliminary report. 1950. Bulletin of the World Health Organization, 77(1), 84–93.
8.
Zurück zum Zitat Gandini, S., EdoardoBotteri, S., Boniol, M., Lowenfels, A. B., Maisonneuve, P., & Boyle, P. (2008). Tobacco smoking and cancer: A meta-analysis. International Journal of Cancer, 122, 155–164. Gandini, S., EdoardoBotteri, S., Boniol, M., Lowenfels, A. B., Maisonneuve, P., & Boyle, P. (2008). Tobacco smoking and cancer: A meta-analysis. International Journal of Cancer, 122, 155–164.
9.
Zurück zum Zitat Smith, C. J., Perfetti, T. A., Rumple, M. A., Rodgman, A., & Doolittle, D. J. (2001). “IARC Group 2B carcinogens” reported in cigarette mainstream smoke. Food and Chemical Toxicolog, 39(2), 183–205. Smith, C. J., Perfetti, T. A., Rumple, M. A., Rodgman, A., & Doolittle, D. J. (2001). “IARC Group 2B carcinogens” reported in cigarette mainstream smoke. Food and Chemical Toxicolog, 39(2), 183–205.
10.
Zurück zum Zitat Olshan, A. F., Weissler, M. C., Pei, H., & Conway, K. (1997). p53 mutations in head and neck cancer: New data and evaluation of mutational spectra. Cancer Epidemiology, Biomarkers & Prevention, 6, 499–504. Olshan, A. F., Weissler, M. C., Pei, H., & Conway, K. (1997). p53 mutations in head and neck cancer: New data and evaluation of mutational spectra. Cancer Epidemiology, Biomarkers & Prevention, 6, 499–504.
11.
Zurück zum Zitat Couraud, S., Zalcman, G., Milleron, B., Morin, F., & Souquet, P.-J. (2012). Lung cancer in never smokers—A review. European Journal of Cancer, 48, 1299–1311. Couraud, S., Zalcman, G., Milleron, B., Morin, F., & Souquet, P.-J. (2012). Lung cancer in never smokers—A review. European Journal of Cancer, 48, 1299–1311.
12.
Zurück zum Zitat Akhtar, N., & Bansal, J. G. (2017). Risk factors of Lung Cancer in nonsmoker. Current Problems in Cancer, 41(5), 328–339. Akhtar, N., & Bansal, J. G. (2017). Risk factors of Lung Cancer in nonsmoker. Current Problems in Cancer, 41(5), 328–339.
13.
Zurück zum Zitat Detterbeck, F. C., Postmus, P. E., & Tanoue, L. T. (2013). The stage classification of lung cancer diagnosis and management of lung cancer, 3rd ed: American College of chest physicians evidence-based clinical practice guidelines. Chest, 143(5), e191S–e210S. Detterbeck, F. C., Postmus, P. E., & Tanoue, L. T. (2013). The stage classification of lung cancer diagnosis and management of lung cancer, 3rd ed: American College of chest physicians evidence-based clinical practice guidelines. Chest, 143(5), e191S–e210S.
14.
Zurück zum Zitat Detterbeck, F. C. (2018). The eighth edition TNM stage classification for lung cancer: What does it mean on main street? The Journal of Thoracic and Cardiovascular Surgery, 155(1), 356–359. Detterbeck, F. C. (2018). The eighth edition TNM stage classification for lung cancer: What does it mean on main street? The Journal of Thoracic and Cardiovascular Surgery, 155(1), 356–359.
15.
Zurück zum Zitat Rolke, H. B., Bakke, P. S., & Gallefoss, F. (2007). Delays in the diagnostic pathways for primary pulmonary carcinoma in Southern Norway. Respiratory Medicine, 101(6), 1251–1257. Rolke, H. B., Bakke, P. S., & Gallefoss, F. (2007). Delays in the diagnostic pathways for primary pulmonary carcinoma in Southern Norway. Respiratory Medicine, 101(6), 1251–1257.
16.
Zurück zum Zitat Byrne, S. C., Barrett, B., & Bhatia, R. (2015). The impact of diagnostic imaging wait times on the prognosis of lung cancer. Canadian Association of Radiologists Journal, 66(1), 53–57. Byrne, S. C., Barrett, B., & Bhatia, R. (2015). The impact of diagnostic imaging wait times on the prognosis of lung cancer. Canadian Association of Radiologists Journal, 66(1), 53–57.
17.
Zurück zum Zitat Bjerager, M., Palshof, T., Dahl, R., Vedsted, P., & Olese, F. (2006). Delay in diagnosis of lung cancer in general practice. British Journal of General Practice, 56(532), 863–868. Bjerager, M., Palshof, T., Dahl, R., Vedsted, P., & Olese, F. (2006). Delay in diagnosis of lung cancer in general practice. British Journal of General Practice, 56(532), 863–868.
18.
Zurück zum Zitat Lauenstein, T. C., Goehde, S. C., Herborn, C. U., Goyen, M., Oberhoff, C., Debatin, J. F., et al. (2004). Whole-body MR imaging: Evaluation of patients for metastases. Radiology, 233(1), 139–148. Lauenstein, T. C., Goehde, S. C., Herborn, C. U., Goyen, M., Oberhoff, C., Debatin, J. F., et al. (2004). Whole-body MR imaging: Evaluation of patients for metastases. Radiology, 233(1), 139–148.
19.
Zurück zum Zitat The National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365(5), 395–409. The National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365(5), 395–409.
20.
Zurück zum Zitat Chao, F., & Zhang, H. (2012). PET/CT in the staging of the non-small-cell lung cancer. Journal of Biomedicine and Biotechnology, 2012, 783739. Chao, F., & Zhang, H. (2012). PET/CT in the staging of the non-small-cell lung cancer. Journal of Biomedicine and Biotechnology, 2012, 783739.
21.
Zurück zum Zitat Ricard, F., & Giammarile, F. (2014). PET-CT and diagnostic CT: The synergy of metabolic and morphological data in onco-haematology. Diagnostic and Interventional Imaging, 95(1), 55–62. Ricard, F., & Giammarile, F. (2014). PET-CT and diagnostic CT: The synergy of metabolic and morphological data in onco-haematology. Diagnostic and Interventional Imaging, 95(1), 55–62.
22.
Zurück zum Zitat Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In N. Dey, A. Ashour, & S. Borra (Eds.), Classification in BioApps. Lecture notes in computational vision and biomechanics (Vol. 26). Berlin: Springer. Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In N. Dey, A. Ashour, & S. Borra (Eds.), Classification in BioApps. Lecture notes in computational vision and biomechanics (Vol. 26). Berlin: Springer.
23.
Zurück zum Zitat Wang, W., Chen, G., Chen, H., AnhDinh, T. T., JinyangGao, B. C., Ooi, K.-L. T., et al. (2016). Deep learning at scale and at ease. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 12(4), 1–25. Wang, W., Chen, G., Chen, H., AnhDinh, T. T., JinyangGao, B. C., Ooi, K.-L. T., et al. (2016). Deep learning at scale and at ease. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 12(4), 1–25.
25.
Zurück zum Zitat Li, X., & Wu, X. (2015). Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In IEEE international conference on acoustics, speech and signal processing (pp. 4520–4524). IEEE. Li, X., & Wu, X. (2015). Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In IEEE international conference on acoustics, speech and signal processing (pp. 4520–4524). IEEE.
26.
Zurück zum Zitat Socher, R., Lin, C.C., Manning, C., & Ng, A.Y. (2011). Parsing natural scenes and natural language with recursive neural networks. In International conference on machine learning (pp. 129–136). Omnipress. Socher, R., Lin, C.C., Manning, C., & Ng, A.Y. (2011). Parsing natural scenes and natural language with recursive neural networks. In International conference on machine learning (pp. 129–136). Omnipress.
27.
Zurück zum Zitat Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5), 5947. Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5), 5947.
28.
Zurück zum Zitat Vinod, N., & Hinton, G.E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807–814). Vinod, N., & Hinton, G.E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807–814).
29.
Zurück zum Zitat Salakhutdinov, R., & Hinton, G. (2009). Deep boltzmann machines. In Proceedings of AISTATS 2009 (pp. 448–455). PMLR. Salakhutdinov, R., & Hinton, G. (2009). Deep boltzmann machines. In Proceedings of AISTATS 2009 (pp. 448–455). PMLR.
30.
Zurück zum Zitat Salakhutdinov, R., & Hinton, G. (2012). An efficient learning procedure for deep Boltzmann machines. Neural Computation, 24(8), 1967–2006.MathSciNetMATH Salakhutdinov, R., & Hinton, G. (2012). An efficient learning procedure for deep Boltzmann machines. Neural Computation, 24(8), 1967–2006.MathSciNetMATH
31.
Zurück zum Zitat Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504.MathSciNetMATH Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504.MathSciNetMATH
32.
Zurück zum Zitat Shaffie, A. et al. (2017). A new framework for incorporating appearance and shape features of lung nodules for precise diagnosis of lung cancer. In 2017 IEEE international conference on image processing (ICIP), Beijing (pp. 1372–1376). Shaffie, A. et al. (2017). A new framework for incorporating appearance and shape features of lung nodules for precise diagnosis of lung cancer. In 2017 IEEE international conference on image processing (ICIP), Beijing (pp. 1372–1376).
34.
35.
Zurück zum Zitat Kaiming, H., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE CVPR (pp. 770–778). Kaiming, H., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE CVPR (pp. 770–778).
37.
Zurück zum Zitat Alex, K., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., Red Hook, NY, USA (pp. 1097–1105). Alex, K., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., Red Hook, NY, USA (pp. 1097–1105).
38.
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680). Curran Associates. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680). Curran Associates.
39.
Zurück zum Zitat Pouyanfar, S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys, 51(5), 92. Pouyanfar, S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys, 51(5), 92.
40.
Zurück zum Zitat Jin, X., Ma, C., Zhang, Y., & Li, L. (2017). Classification of lung nodules based on convolutional deep belief network. In 2017 10th International symposium on computational intelligence and design (ISCID), Hangzhou (pp. 139–142). Jin, X., Ma, C., Zhang, Y., & Li, L. (2017). Classification of lung nodules based on convolutional deep belief network. In 2017 10th International symposium on computational intelligence and design (ISCID), Hangzhou (pp. 139–142).
41.
Zurück zum Zitat Golan, R., Christian, J., & Denzinger, J. (2016). Lung nodule detection in CT images using deep convolutional neural networks. In 2016 International joint conference on neural networks (IJCNN). IEEE. Golan, R., Christian, J., & Denzinger, J. (2016). Lung nodule detection in CT images using deep convolutional neural networks. In 2016 International joint conference on neural networks (IJCNN). IEEE.
42.
Zurück zum Zitat Hirayama, K., Miyake, N., Lu, H., Tan, J.K., Kim, H., Tachibana, R., Hirano, Y., & Kido, S. (2017). Extraction of GGO regions from chest CT images using deep learning. In 2017 17th International conference on control, automation and systems (ICCAS). Hirayama, K., Miyake, N., Lu, H., Tan, J.K., Kim, H., Tachibana, R., Hirano, Y., & Kido, S. (2017). Extraction of GGO regions from chest CT images using deep learning. In 2017 17th International conference on control, automation and systems (ICCAS).
43.
Zurück zum Zitat Naidich, D. P. (2004). Lung cancer detection and characterization: Challenges and solutions. In C. D. Claussen, E. K. Fishman, B. Marincek, & M. Reiser (Eds.), Multislice CT. Berlin: Springer. Naidich, D. P. (2004). Lung cancer detection and characterization: Challenges and solutions. In C. D. Claussen, E. K. Fishman, B. Marincek, & M. Reiser (Eds.), Multislice CT. Berlin: Springer.
44.
Zurück zum Zitat Zhu, W., Liu, C., Fan, W., & Xie, X. (2018). DeepLung: Deep 3D dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE winter conference on applications of computer vision (WACV). Zhu, W., Liu, C., Fan, W., & Xie, X. (2018). DeepLung: Deep 3D dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE winter conference on applications of computer vision (WACV).
45.
Zurück zum Zitat Dou, Q. (2017). Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering, 64(7), 1558–1567. Dou, Q. (2017). Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering, 64(7), 1558–1567.
46.
Zurück zum Zitat Way, T. W., et al. (2009). Computer-aided diagnosis of pulmonary nodules on CT scans: Improvement of classification performance with nodule surface features. Medical Physics, 36, 3086–3098. Way, T. W., et al. (2009). Computer-aided diagnosis of pulmonary nodules on CT scans: Improvement of classification performance with nodule surface features. Medical Physics, 36, 3086–3098.
47.
Zurück zum Zitat Schwyzer, M. (2018). Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—Initial results. Lung Cancer, 126, 170–173. Schwyzer, M. (2018). Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—Initial results. Lung Cancer, 126, 170–173.
48.
Zurück zum Zitat Armato, S. G., III, McLennan, G., Bidaut, L., et al. (2011). The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38(2), 915–931. Armato, S. G., III, McLennan, G., Bidaut, L., et al. (2011). The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38(2), 915–931.
53.
Zurück zum Zitat Han, G., Liu, X., Han, F., Santika, I. N. T., Zhao, Y., Zhao, X., et al. (2015). The LISS—a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Transactions on Biomedical Engineering, 62(2), 648–656. Han, G., Liu, X., Han, F., Santika, I. N. T., Zhao, Y., Zhao, X., et al. (2015). The LISS—a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education. IEEE Transactions on Biomedical Engineering, 62(2), 648–656.
54.
Zurück zum Zitat Armato, S. G., McLennan, G., Meyer, C. R., Reeves, A. P., McNitt-Gray, M. F., Croft, B. Y., et al. (2016). The reference image database to evaluate response to therapy in lung cancer (RIDER) project: A resource for the development of change analysis software. Clinical Pharmacology and Therapeutics, 84(4), 448–456. Armato, S. G., McLennan, G., Meyer, C. R., Reeves, A. P., McNitt-Gray, M. F., Croft, B. Y., et al. (2016). The reference image database to evaluate response to therapy in lung cancer (RIDER) project: A resource for the development of change analysis software. Clinical Pharmacology and Therapeutics, 84(4), 448–456.
56.
Zurück zum Zitat Fang, T. (2018). A novel computer-aided lung cancer detection method based on transfer learning from GoogLeNet and median intensity projections. In 2018 IEEE international conference on computer and communication engineering technology (CCET). Fang, T. (2018). A novel computer-aided lung cancer detection method based on transfer learning from GoogLeNet and median intensity projections. In 2018 IEEE international conference on computer and communication engineering technology (CCET).
57.
Zurück zum Zitat Liao, F., Liang, M., Li, Z., Hu, X., & Song, S. (2017) Evaluate the malignancy of pulmonary nodules using the 3d deep leaky noisy-or network. arXiv preprint arXiv:1711.08324. Liao, F., Liang, M., Li, Z., Hu, X., & Song, S. (2017) Evaluate the malignancy of pulmonary nodules using the 3d deep leaky noisy-or network. arXiv preprint arXiv:1711.08324.
58.
Zurück zum Zitat Nagao, M. et al. (2017). Detection of abnormal candidate regions on temporal subtraction images based on DCNN. In 2017 17th International conference on control, automation and systems (ICCAS), Jeju (pp. 1444–1448). Nagao, M. et al. (2017). Detection of abnormal candidate regions on temporal subtraction images based on DCNN. In 2017 17th International conference on control, automation and systems (ICCAS), Jeju (pp. 1444–1448).
59.
Zurück zum Zitat Sathyan, H., & Panicker, J.V. (2018). Lung nodule classification using deep ConvNets on CT image. In 2018 9th International conference on computing, communication and networking technologies (ICCCNT). Sathyan, H., & Panicker, J.V. (2018). Lung nodule classification using deep ConvNets on CT image. In 2018 9th International conference on computing, communication and networking technologies (ICCCNT).
60.
Zurück zum Zitat Fan, L., Xia, Z., Zhang, X., & Feng, X. (2017). Lung nodule detection based on 3D convolutional neural networks. In: 2017 International conference on the frontiers and advances in data science (FADS). Fan, L., Xia, Z., Zhang, X., & Feng, X. (2017). Lung nodule detection based on 3D convolutional neural networks. In: 2017 International conference on the frontiers and advances in data science (FADS).
61.
Zurück zum Zitat Paul, R., Hawkins, S.H., Hall, L.O., Goldgof, D.B., & Gillies, R.J. (2016). Combining deep neural network and traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic CT. In 2016 IEEE international conference on systems, man, and cybernetics. Paul, R., Hawkins, S.H., Hall, L.O., Goldgof, D.B., & Gillies, R.J. (2016). Combining deep neural network and traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic CT. In 2016 IEEE international conference on systems, man, and cybernetics.
62.
Zurück zum Zitat Sun, B., Ma, C.-H., Jin, X.-Y., & Luo, Y. (2016). Deep sparse auto-encoder for computer aided pulmonary nodules CT diagnosis. In 2016 13th international computer conference on wavelet active media technology and information processing (ICCWAMTIP). Sun, B., Ma, C.-H., Jin, X.-Y., & Luo, Y. (2016). Deep sparse auto-encoder for computer aided pulmonary nodules CT diagnosis. In 2016 13th international computer conference on wavelet active media technology and information processing (ICCWAMTIP).
63.
Zurück zum Zitat Rossetto, A.M., & Zhou, W. (2017). Deep learning for categorization of lung cancer CT images. In 2017 IEEE/ACM international conference on connected health: Applications, systems and engineering technologies (CHASE), Philadelphia, PA (pp. 272–273). Rossetto, A.M., & Zhou, W. (2017). Deep learning for categorization of lung cancer CT images. In 2017 IEEE/ACM international conference on connected health: Applications, systems and engineering technologies (CHASE), Philadelphia, PA (pp. 272–273).
64.
Zurück zum Zitat Luo, Z., Brubaker, M.A., & Brudno, M. (2017). Size and texture-based classification of lung tumors with 3D CNNs. In 2017 IEEE winter conference on applications of computer vision (WACV). Luo, Z., Brubaker, M.A., & Brudno, M. (2017). Size and texture-based classification of lung tumors with 3D CNNs. In 2017 IEEE winter conference on applications of computer vision (WACV).
65.
Zurück zum Zitat Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2015). Multi-scale convolutional neural networks for lung nodule classification. In International conference on information processing in medical imaging (pp. 588–599). Springer. Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2015). Multi-scale convolutional neural networks for lung nodule classification. In International conference on information processing in medical imaging (pp. 588–599). Springer.
66.
Zurück zum Zitat Anirudh, R., Thiagarajan, J.J., Bremer, T., Kim, H. (2016) Lung nodule detection using 3d convolutional neural networks trained on weakly labeled data. In SPIE medical imaging (pp. 978532–978532). Anirudh, R., Thiagarajan, J.J., Bremer, T., Kim, H. (2016) Lung nodule detection using 3d convolutional neural networks trained on weakly labeled data. In SPIE medical imaging (pp. 978532–978532).
67.
Zurück zum Zitat Masood, A., Shenga, B., Li, P., Hou, X., Wei, X., Qin, J., et al. (2018). Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. Journal of Biomedical Informatics, 79, 117–128. Masood, A., Shenga, B., Li, P., Hou, X., Wei, X., Qin, J., et al. (2018). Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. Journal of Biomedical Informatics, 79, 117–128.
68.
Zurück zum Zitat Paul, R., Hall, L., Goldgof, D., Schabath, M., & Gillies, R. (2018). Predicting nodule malignancy using a CNN ensemble approach. In 2018 International joint conference on neural networks (IJCNN), Rio de Janeiro (pp. 1–8). Paul, R., Hall, L., Goldgof, D., Schabath, M., & Gillies, R. (2018). Predicting nodule malignancy using a CNN ensemble approach. In 2018 International joint conference on neural networks (IJCNN), Rio de Janeiro (pp. 1–8).
69.
Zurück zum Zitat Tang, H., Kim, D.R., & Xie, X. (2018). Automated pulmonary nodule detection using 3D deep convolutional neural networks, In 2018 IEEE 15th international convolutional neural networks symposium on biomedical imaging (ISBI 2018). Tang, H., Kim, D.R., & Xie, X. (2018). Automated pulmonary nodule detection using 3D deep convolutional neural networks, In 2018 IEEE 15th international convolutional neural networks symposium on biomedical imaging (ISBI 2018).
70.
71.
Zurück zum Zitat Huang, X., Shan, J., & Vaidya, V. (2017). Lung nodule detection in CT using 3D convolutional neural networks. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017). Huang, X., Shan, J., & Vaidya, V. (2017). Lung nodule detection in CT using 3D convolutional neural networks. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017).
72.
Zurück zum Zitat Hussein, S., Gillies, R., Cao, K., Song, Q., & Bagci, U. (2017) Tumornet: Lung nodule characterization using multi-viewconvolutional neural network with gaussian process. In IEEE international symposium on biomedical imaging (ISBI) 2017. Hussein, S., Gillies, R., Cao, K., Song, Q., & Bagci, U. (2017) Tumornet: Lung nodule characterization using multi-viewconvolutional neural network with gaussian process. In IEEE international symposium on biomedical imaging (ISBI) 2017.
73.
Zurück zum Zitat Yang, H., & Yu, H. (2016). Deep learning for the classification of lung nodules. arXiv:1611.06651. Yang, H., & Yu, H. (2016). Deep learning for the classification of lung nodules. arXiv:1611.06651.
74.
Zurück zum Zitat Devinder, K. et al. (2017). Discovery radiomics for pathologically-proven computed tomography lung cancer prediction. In ICIAR. Devinder, K. et al. (2017). Discovery radiomics for pathologically-proven computed tomography lung cancer prediction. In ICIAR.
75.
Zurück zum Zitat Shafiee, M.J., Chung, A.G., Kumar, D., Khalvati, F., Haider, M., & Wong, A. (2015). Discovery radiomics via stochasticnet sequencers for cancer detection. arxiv preprint arXiv:151103361. Shafiee, M.J., Chung, A.G., Kumar, D., Khalvati, F., Haider, M., & Wong, A. (2015). Discovery radiomics via stochasticnet sequencers for cancer detection. arxiv preprint arXiv:151103361.
77.
Zurück zum Zitat Gupta, A., Das, S., Khurana, T., & Suri, K. (2018). Prediction of lung cancer from low-resolution nodules in CT-scan images by using deep features. In 2018 International conference on advances in computing, communications and informatics (ICACCI), Bangalore (pp. 531–537). Gupta, A., Das, S., Khurana, T., & Suri, K. (2018). Prediction of lung cancer from low-resolution nodules in CT-scan images by using deep features. In 2018 International conference on advances in computing, communications and informatics (ICACCI), Bangalore (pp. 531–537).
78.
Zurück zum Zitat Jin, T., Cui, H., Zeng, S., & Wang, X. (2017). Learning deep spatial lung features by 3D convolutional neural network for early cancer detection. In 2017 International conference on digital image computing: Techniques and applications (DICTA). Jin, T., Cui, H., Zeng, S., & Wang, X. (2017). Learning deep spatial lung features by 3D convolutional neural network for early cancer detection. In 2017 International conference on digital image computing: Techniques and applications (DICTA).
81.
Zurück zum Zitat Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., & Summers, R.M. (2014) A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations. In Medical image computing and computer-assisted intervention–MICCAI 2014 (pp. 520–527). Springer. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., & Summers, R.M. (2014) A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations. In Medical image computing and computer-assisted interventionMICCAI 2014 (pp. 520–527). Springer.
82.
Zurück zum Zitat Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., & Heng, P.-A. (2017). Automated pulmonary nodule detection via 3d convnets with online sample filtering and hybrid-loss residual learning. In MICCAI. Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., & Heng, P.-A. (2017). Automated pulmonary nodule detection via 3d convnets with online sample filtering and hybrid-loss residual learning. In MICCAI.
83.
Zurück zum Zitat Setio, A. A. A., Jacobs, C., Gelderblom, J., & van Ginneken, B. (2015). Automatic detection of large pulmonary solid nodules in thoracic CT images. Medical Physics, 42(10), 5642–5653. Setio, A. A. A., Jacobs, C., Gelderblom, J., & van Ginneken, B. (2015). Automatic detection of large pulmonary solid nodules in thoracic CT images. Medical Physics, 42(10), 5642–5653.
84.
Zurück zum Zitat Kumar, D., Wong, A., & Clausi, D.A. (2015). Lung nodule classification using deep features in CT images. In 2015 12th conference on computer and robot vision (June 2015) (pp 133–138). Kumar, D., Wong, A., & Clausi, D.A. (2015). Lung nodule classification using deep features in CT images. In 2015 12th conference on computer and robot vision (June 2015) (pp 133–138).
85.
Zurück zum Zitat Wang, S., Liu, Z., Chen, X., Zhu, Y., Zhou, H., Tang, Z., Wei, W., Dong, D., Wang, M., & Tian, J. (2018). Unsupervised deep learning features for lung cancer overall survival analysis. In 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). Wang, S., Liu, Z., Chen, X., Zhu, Y., Zhou, H., Tang, Z., Wei, W., Dong, D., Wang, M., & Tian, J. (2018). Unsupervised deep learning features for lung cancer overall survival analysis. In 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC).
87.
Zurück zum Zitat Ding, J., Li, A., Hu, Z., & Wang, L. (2017) Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In MICCAI. Ding, J., Li, A., Hu, Z., & Wang, L. (2017) Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In MICCAI.
88.
Zurück zum Zitat Shaffie, A., Soliman, A., Ghazal, M., Taher, F., Dunlap, N., Wang, B., van Berkel, V., Gimel’farb, G., Elmaghraby, A., & El-Baz, A. (2018). A novel autoencoder-based diagnostic system for early assessment of lung cancer. In 2018 25th IEEE international conference on image processing (ICIP). Shaffie, A., Soliman, A., Ghazal, M., Taher, F., Dunlap, N., Wang, B., van Berkel, V., Gimel’farb, G., Elmaghraby, A., & El-Baz, A. (2018). A novel autoencoder-based diagnostic system for early assessment of lung cancer. In 2018 25th IEEE international conference on image processing (ICIP).
89.
Zurück zum Zitat Kockelkorn, T. J. P., Rikxoort, M., Grutters, C., et al. (2010). Interactive lung segmentation in CT scans with severe abnormalities. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 14, 564–567. Kockelkorn, T. J. P., Rikxoort, M., Grutters, C., et al. (2010). Interactive lung segmentation in CT scans with severe abnormalities. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 14, 564–567.
90.
Zurück zum Zitat Meng, Y., Yi, P., Guo, X., Gu, W., Liu, X., Wang, W., & Zhu, T. (2018). Detection for pulmonary nodules using RGB channel superposition method in deep learning framework. In 2018 Third international conference on security of smart cities, industrial control system and communications (SSIC). Meng, Y., Yi, P., Guo, X., Gu, W., Liu, X., Wang, W., & Zhu, T. (2018). Detection for pulmonary nodules using RGB channel superposition method in deep learning framework. In 2018 Third international conference on security of smart cities, industrial control system and communications (SSIC).
91.
Zurück zum Zitat Alves, J.H., Moreira Neto, P.M., & Oliveira, L.F. (2018) Extracting lungs from CT images using fully convolutional networks. In 2018 International joint conference on neural networks (IJCNN). Alves, J.H., Moreira Neto, P.M., & Oliveira, L.F. (2018) Extracting lungs from CT images using fully convolutional networks. In 2018 International joint conference on neural networks (IJCNN).
92.
93.
Zurück zum Zitat Lakshmanaprabu, S. K., Mohanty, S. N., Shankar, K., Arunkumar, N., & Ramirez, G. (2018). Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems, 92, 374–382. (ISSN: 0167-739X). Lakshmanaprabu, S. K., Mohanty, S. N., Shankar, K., Arunkumar, N., & Ramirez, G. (2018). Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems, 92, 374–382. (ISSN: 0167-739X).
94.
Zurück zum Zitat Xie, Y., Zhang, J., Xia, Y., Fulham, M., & Zhang, Y. (2018). Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Data Information Fusion, 42, 102–110. (ISSN: 1566-2535). Xie, Y., Zhang, J., Xia, Y., Fulham, M., & Zhang, Y. (2018). Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Data Information Fusion, 42, 102–110. (ISSN: 1566-2535).
95.
Zurück zum Zitat Cao, P., Liu, X., Zhang, J., Li, W., Zhao, D., Huang, M., et al. (2017). A _ 2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD. Computer Methods and Programs in Biomedicine, 140, 211–231. Cao, P., Liu, X., Zhang, J., Li, W., Zhao, D., Huang, M., et al. (2017). A _ 2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD. Computer Methods and Programs in Biomedicine, 140, 211–231.
96.
Zurück zum Zitat Singh, G. A. P., & Gupta, P. K. (2018). Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications, 31(10), 6863–6877. Singh, G. A. P., & Gupta, P. K. (2018). Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications, 31(10), 6863–6877.
97.
Zurück zum Zitat Sun, W., Zheng, B., & Qian, W. (2017). Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Computers in Biology and Medicine, 89(1), 530–539. Sun, W., Zheng, B., & Qian, W. (2017). Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Computers in Biology and Medicine, 89(1), 530–539.
98.
Zurück zum Zitat Kim, B., Sung, Y.S., & Suk, H. (2016). Deep feature learning for pulmonary nodule classification in a lung CT. In 2016 4th International winter conference on brain-computer interface (BCI), Yongpyong (pp. 1–3). Kim, B., Sung, Y.S., & Suk, H. (2016). Deep feature learning for pulmonary nodule classification in a lung CT. In 2016 4th International winter conference on brain-computer interface (BCI), Yongpyong (pp. 1–3).
100.
Zurück zum Zitat Xie, Y., Zhang, J., Liu, S., Cai, W., & Xia, Y. (2017). Lung nodule classification by jointly using visual descriptors and deep features. Lecture Notes in Computer Science, 10081, 116–125. Xie, Y., Zhang, J., Liu, S., Cai, W., & Xia, Y. (2017). Lung nodule classification by jointly using visual descriptors and deep features. Lecture Notes in Computer Science, 10081, 116–125.
101.
Zurück zum Zitat Cao, P., Liu, X., Yang, J., Zhao, D., Li, W., Huang, M., et al. (2017). A multi-kernel based framework for heterogeneous feature selection and over-sampling for com- puter-aided detection of pulmonary nodules. Pattern Recognition, 64(C), 327–346. Cao, P., Liu, X., Yang, J., Zhao, D., Li, W., Huang, M., et al. (2017). A multi-kernel based framework for heterogeneous feature selection and over-sampling for com- puter-aided detection of pulmonary nodules. Pattern Recognition, 64(C), 327–346.
103.
Zurück zum Zitat Yuan, J., Liu, X., Hou, F., Qin, H., & Hao, A. (2018). Hybrid-feature-guided lung nodule type classification on CT images. Computers & Graphics, 70, 288–299. Yuan, J., Liu, X., Hou, F., Qin, H., & Hao, A. (2018). Hybrid-feature-guided lung nodule type classification on CT images. Computers & Graphics, 70, 288–299.
104.
Zurück zum Zitat Silva, G. L. F., Valente, T. L. A., Silva, A. C., Paiva, A. C., & Gattassa, M. (2018). Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Computer Methods and Programs in Biomedicine, 162, 109–118. Silva, G. L. F., Valente, T. L. A., Silva, A. C., Paiva, A. C., & Gattassa, M. (2018). Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Computer Methods and Programs in Biomedicine, 162, 109–118.
106.
Zurück zum Zitat Yu, G., Xiaoqi, L., Yang, L., Zhang, B., Dahua, Yu., Zhao, Y., et al. (2018). Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Computers in Biology and Medicine, 103, 220–231. Yu, G., Xiaoqi, L., Yang, L., Zhang, B., Dahua, Yu., Zhao, Y., et al. (2018). Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Computers in Biology and Medicine, 103, 220–231.
107.
Zurück zum Zitat Zhan, J., Xia, Y., Zeng, H., & Zhang, Y. (2018). NODULe: Combining constrained multi-scale LoG filters with densely dilated 3D deep convolutional neural network for pulmonary nodule detection. Neurocomputing, 317(23), 159–167. Zhan, J., Xia, Y., Zeng, H., & Zhang, Y. (2018). NODULe: Combining constrained multi-scale LoG filters with densely dilated 3D deep convolutional neural network for pulmonary nodule detection. Neurocomputing, 317(23), 159–167.
108.
Zurück zum Zitat Tafti, A.P., Bashiri, F.S., LaRose, E., & Peissig, P. (2018) Diagnostic classification of lung CT images using deep 3D multi-scale convolutional neural network. In 2018 IEEE international conference on healthcare informatics. Tafti, A.P., Bashiri, F.S., LaRose, E., & Peissig, P. (2018) Diagnostic classification of lung CT images using deep 3D multi-scale convolutional neural network. In 2018 IEEE international conference on healthcare informatics.
109.
Zurück zum Zitat Kim, B.-C., Yoon, J. S., Choi, J.-S., & Suk, H.-I. (2019). Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection. Neural Networks, 115, 1–10. Kim, B.-C., Yoon, J. S., Choi, J.-S., & Suk, H.-I. (2019). Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection. Neural Networks, 115, 1–10.
111.
Zurück zum Zitat Jin, H., Li, Z., Tong, R., & Lin, L. (2018). A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. Medical Physics, 45(5), 2097–2107. Jin, H., Li, Z., Tong, R., & Lin, L. (2018). A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. Medical Physics, 45(5), 2097–2107.
112.
Zurück zum Zitat Lyu, J., & Ling, S.H. (2018). Using multi-level convolutional neural network for classification of lung nodules on CT images. In 2018 40th Annual international conference of the IEEE engineering in medicine and biology society. Lyu, J., & Ling, S.H. (2018). Using multi-level convolutional neural network for classification of lung nodules on CT images. In 2018 40th Annual international conference of the IEEE engineering in medicine and biology society.
115.
Zurück zum Zitat Zuo, W., Zhou, F., Li, Z., & Wang, L. (2019). Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection. IEEE Access, 7, 32510–32521. Zuo, W., Zhou, F., Li, Z., & Wang, L. (2019). Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection. IEEE Access, 7, 32510–32521.
116.
Zurück zum Zitat Kido, S., Hirano, Y., & Hashimoto, N. (2018). Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN). In 2018 International workshop on advanced image technology (IWAIT). Kido, S., Hirano, Y., & Hashimoto, N. (2018). Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN). In 2018 International workshop on advanced image technology (IWAIT).
117.
118.
Zurück zum Zitat Dobrenkii, A., Kuleev, R., Khan, A., Ramirez Rivera, A., & Khattak, A. M. (2017). Large residual multiple view 3D CNN for false positive reduction in pulmonary nodule detection. In 2017 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB). Dobrenkii, A., Kuleev, R., Khan, A., Ramirez Rivera, A., & Khattak, A. M. (2017). Large residual multiple view 3D CNN for false positive reduction in pulmonary nodule detection. In 2017 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB).
119.
Zurück zum Zitat Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M., et al. (2018). Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Transactions on Medical Imaging, 38(4), 991–1004. Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M., et al. (2018). Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Transactions on Medical Imaging, 38(4), 991–1004.
120.
Zurück zum Zitat Zhao, C., Han, J., Jia, Y., & Gou, F. (2018) Lung nodule detection via 3D U-Net and contextual convolutional neural network. In 2018 International conference on networking and network applications (NaNA) (pp. 356–361). Zhao, C., Han, J., Jia, Y., & Gou, F. (2018) Lung nodule detection via 3D U-Net and contextual convolutional neural network. In 2018 International conference on networking and network applications (NaNA) (pp. 356–361).
121.
Zurück zum Zitat Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., et al. (2017). Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 61, 663–673. Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., et al. (2017). Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 61, 663–673.
122.
Zurück zum Zitat Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., & Qian, W. (2018). Agile convolutional neural network for pulmonary nodule classification using CT images. International Journal of Computer Assisted Radiology and Surgery, 13(4), 585–595. Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., & Qian, W. (2018). Agile convolutional neural network for pulmonary nodule classification using CT images. International Journal of Computer Assisted Radiology and Surgery, 13(4), 585–595.
123.
Zurück zum Zitat Wang, H., Zhou, Z., Li, Y., Chen, Z., Lu, P., Wang, W., et al. (2017). Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Research, 7, 11. Wang, H., Zhou, Z., Li, Y., Chen, Z., Lu, P., Wang, W., et al. (2017). Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Research, 7, 11.
124.
Zurück zum Zitat Wang, Z., Xu, H., & Sun, M. (2017). Deep learning based nodule detection from pulmonary CT images. In 2017 10th International symposium on computational intelligence and design (ISCID), Hangzhou (pp. 370–373). Wang, Z., Xu, H., & Sun, M. (2017). Deep learning based nodule detection from pulmonary CT images. In 2017 10th International symposium on computational intelligence and design (ISCID), Hangzhou (pp. 370–373).
125.
Zurück zum Zitat Setio, A.A.A. et al. (2016). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. arXiv.org cs.CV. Setio, A.A.A. et al. (2016). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. arXiv.org cs.CV.
126.
Zurück zum Zitat Chon, A., & Balachandar, N. (2017). Deep convolutional neural networks for lung cancer detection, Stanford University. Chon, A., & Balachandar, N. (2017). Deep convolutional neural networks for lung cancer detection, Stanford University.
127.
Zurück zum Zitat Kuan, K., Ravaut, M., Manek, G., & Chen, H. (2017). Deep learning for lung cancer detection: Tackling the Kaggle data science bowl 2017 challenge. Retrieved from arXiv:1705.09435. Kuan, K., Ravaut, M., Manek, G., & Chen, H. (2017). Deep learning for lung cancer detection: Tackling the Kaggle data science bowl 2017 challenge. Retrieved from arXiv:​1705.​09435.
128.
Zurück zum Zitat Shen, W., Zhou, M., Yang, F., Dong, D., Yang, C., Zang, Y., & Tian, J. (2016). Learning from experts: Developing transferable deep features for patient-level lung cancer prediction. In International conference on medical image computing and computer-assisted intervention. (pp. 124–131). Springer. Shen, W., Zhou, M., Yang, F., Dong, D., Yang, C., Zang, Y., & Tian, J. (2016). Learning from experts: Developing transferable deep features for patient-level lung cancer prediction. In International conference on medical image computing and computer-assisted intervention. (pp. 124–131). Springer.
129.
Zurück zum Zitat Bush, I.F. (2016). Lung nodule detection and classification. Technical report, Stanford Computer Science. Bush, I.F. (2016). Lung nodule detection and classification. Technical report, Stanford Computer Science.
130.
Zurück zum Zitat Jung, H., Kim, B., Lee, I., Lee, J., & Kang, J. (2018). Classification of lung nodules in CT scans using three-dimensional deep convolutionalneural networks with a checkpoint ensemble method. BMC Medical Imaging, 18, 48. Jung, H., Kim, B., Lee, I., Lee, J., & Kang, J. (2018). Classification of lung nodules in CT scans using three-dimensional deep convolutionalneural networks with a checkpoint ensemble method. BMC Medical Imaging, 18, 48.
131.
Zurück zum Zitat Dey, R., Lu, Z., & Hong, Y. (2018). Diagnostic classification of lung nodules using 3D neural networks. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). Dey, R., Lu, Z., & Hong, Y. (2018). Diagnostic classification of lung nodules using 3D neural networks. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018).
132.
Zurück zum Zitat Khosravan, N., & Bagci, U. (2018). S4ND: Single-shot single-scale lung nodule detection. arxiv preprint arXiv:1805.02279. Khosravan, N., & Bagci, U. (2018). S4ND: Single-shot single-scale lung nodule detection. arxiv preprint arXiv:1805.02279.
133.
Zurück zum Zitat Shaziya, H., Shyamala, K., & Zaheer, R. (2018). Automatic lung segmentation on thoracic CT scans using U-net convolutional network. In 2018 International conference on communication and signal processing (ICCSP). IEEE. Shaziya, H., Shyamala, K., & Zaheer, R. (2018). Automatic lung segmentation on thoracic CT scans using U-net convolutional network. In 2018 International conference on communication and signal processing (ICCSP). IEEE.
134.
Zurück zum Zitat Dai, C., Xiao, B., Chen, Y., Du, Y., Liang, Y., Zhao, K., & Yan, L. (2018). Automated detection of lung nodules in CT images with 3D convolutional neural networks. In 2018 International conference on network infrastructure and digital content (IC-NIDC). Biology Society (EMBC). Dai, C., Xiao, B., Chen, Y., Du, Y., Liang, Y., Zhao, K., & Yan, L. (2018). Automated detection of lung nodules in CT images with 3D convolutional neural networks. In 2018 International conference on network infrastructure and digital content (IC-NIDC). Biology Society (EMBC).
135.
Zurück zum Zitat Ciompi, F., de Hoop, B., van Riel, S. J., Chung, K., Scholten, E., Oudkerk, M., et al. (2015). Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 26(1), 195–202. Ciompi, F., de Hoop, B., van Riel, S. J., Chung, K., Scholten, E., Oudkerk, M., et al. (2015). Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 26(1), 195–202.
136.
Zurück zum Zitat Van, G., Bram, S., Arnaud, A.A., Jacobs, C., & Ciompi, F. (2015). Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In SPIE medical imaging (pp. 286–289). Van, G., Bram, S., Arnaud, A.A., Jacobs, C., & Ciompi, F. (2015). Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In SPIE medical imaging (pp. 286–289).
137.
Zurück zum Zitat Ypsilantis, P.P., & Montana, G. (2016). Recurrent convolutional networks for pulmonary nodule detection in CT imaging. arXiv.org stat.ML. Ypsilantis, P.P., & Montana, G. (2016). Recurrent convolutional networks for pulmonary nodule detection in CT imaging. arXiv.org stat.ML.
138.
Zurück zum Zitat Oliveira, D.A.B., & Viana, M.P. (2018). An efficient multi-scale data representation method for lung nodule false positive reduction using convolutional neural networks. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). Oliveira, D.A.B., & Viana, M.P. (2018). An efficient multi-scale data representation method for lung nodule false positive reduction using convolutional neural networks. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018).
139.
Zurück zum Zitat Causey, J. L., Zhang, J., Ma, S., Jiang, B., Qualls, J. A., Politte, D. G., et al. (2018). Highly accurate model for prediction of lung nodule malignancy with CT scans. Scientific Reports, 8, 9286. Causey, J. L., Zhang, J., Ma, S., Jiang, B., Qualls, J. A., Politte, D. G., et al. (2018). Highly accurate model for prediction of lung nodule malignancy with CT scans. Scientific Reports, 8, 9286.
140.
Zurück zum Zitat Pham, T.D. (2017). Complementary features for radiomic analysis of malignant and benign mediastinal lymph nodes. In 2017 IEEE international conference on image processing (ICIP). Pham, T.D. (2017). Complementary features for radiomic analysis of malignant and benign mediastinal lymph nodes. In 2017 IEEE international conference on image processing (ICIP).
141.
Zurück zum Zitat Chen, J., & Shen, Y. (2017). The effect of kernel size of CNNs for lung nodule classification. In 2017 9th International conference on advanced Infocomm technology (ICAIT), Chengdu (pp 340–344). Chen, J., & Shen, Y. (2017). The effect of kernel size of CNNs for lung nodule classification. In 2017 9th International conference on advanced Infocomm technology (ICAIT), Chengdu (pp 340–344).
142.
Zurück zum Zitat Yan, X., Pang, J., Qi, H., Zhu, Y., Bai, C., Geng, X., Liu, M., Terzopoulos, D., & Ding, X. (2016). Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: A comparison between 2D and 3D strategies. In Chen, C.-S., Lu, J., & Ma, K.-K. (Eds.), LNCS 10118 (pp. 91–101). Yan, X., Pang, J., Qi, H., Zhu, Y., Bai, C., Geng, X., Liu, M., Terzopoulos, D., & Ding, X. (2016). Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: A comparison between 2D and 3D strategies. In Chen, C.-S., Lu, J., & Ma, K.-K. (Eds.), LNCS 10118 (pp. 91–101).
143.
Zurück zum Zitat Xie, H., Yang, D., Sun, N., Chen, Z., & Zhang, Y. (2019). Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognition, 85, 109–119. Xie, H., Yang, D., Sun, N., Chen, Z., & Zhang, Y. (2019). Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognition, 85, 109–119.
144.
Zurück zum Zitat Li, W., Cao, P., Zhao, D., & Wang, J. (2016). Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Computational and Mathematical Methods in Medicine, 2016, 1–7. Li, W., Cao, P., Zhao, D., & Wang, J. (2016). Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Computational and Mathematical Methods in Medicine, 2016, 1–7.
146.
Zurück zum Zitat Song, Q., Zhao, L., XingKe, L., & XueChen, D. (2017). Using deep learning for classification of lung nodules on computed tomography images. Journal of Healthcare Engineering, 1, 1–7. Song, Q., Zhao, L., XingKe, L., & XueChen, D. (2017). Using deep learning for classification of lung nodules on computed tomography images. Journal of Healthcare Engineering, 1, 1–7.
147.
Zurück zum Zitat da Silva, G.L.F., Silva, A.C., de Paiva, A.C., & Gattass, M. (2016). Classification of malignancy of lung nodules in CT images using convolutional neural network. In XVI workshop on medical informatics—2016—Porto Alegre, RS (pp. 2481–2489). da Silva, G.L.F., Silva, A.C., de Paiva, A.C., & Gattass, M. (2016). Classification of malignancy of lung nodules in CT images using convolutional neural network. In XVI workshop on medical informatics2016Porto Alegre, RS (pp. 2481–2489).
151.
Zurück zum Zitat Li, X., Kao, Y., Shen, W., Li, X., Xie, G., Lung nodule malignancy prediction using multi-task convolutional neural network. In Proceedings of SPIE 10134, medical imaging 2017: Computer-aided diagnosis (pp. 1013424). https://doi.org/10.1117/12.2253836. Li, X., Kao, Y., Shen, W., Li, X., Xie, G., Lung nodule malignancy prediction using multi-task convolutional neural network. In Proceedings of SPIE 10134, medical imaging 2017: Computer-aided diagnosis (pp. 1013424). https://​doi.​org/​10.​1117/​12.​2253836.
152.
Zurück zum Zitat Khosravan, N., & Bagci, U. (2018). Semi-supervised multi-task learning for lung cancer diagnosis. In 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). Khosravan, N., & Bagci, U. (2018). Semi-supervised multi-task learning for lung cancer diagnosis. In 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC).
153.
Zurück zum Zitat Winkels, M., & Cohen, T. S. (2019). Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, Medical Image Analysis, 55, 15–26. Winkels, M., & Cohen, T. S. (2019). Pulmonary nodule detection in CT scans with equivariant CNNs. Medical Image Analysis, Medical Image Analysis, 55, 15–26.
154.
Zurück zum Zitat da Nóbrega, R.V.M., Peixoto, S.A., da Silva, S.P.P., & Rebouças Filho, P.P. (2018). Lung nodule classification via deep transfer learning in CT lung images. In 2018 IEEE 31st international symposium on computer-based medical systems (CBMS). da Nóbrega, R.V.M., Peixoto, S.A., da Silva, S.P.P., & Rebouças Filho, P.P. (2018). Lung nodule classification via deep transfer learning in CT lung images. In 2018 IEEE 31st international symposium on computer-based medical systems (CBMS).
156.
Zurück zum Zitat Tu, X., et al. (2017). Automatic categorization and scoring of solid, part-solid and non-solid pulmonary nodules in CT images with convolutional neural network. Scientific Reports, 7, 8533. Tu, X., et al. (2017). Automatic categorization and scoring of solid, part-solid and non-solid pulmonary nodules in CT images with convolutional neural network. Scientific Reports, 7, 8533.
157.
Zurück zum Zitat Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016) A discriminative feature learning approach for deep face recognition. In European conference on computer vision (pp. 499–515). Springer. Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016) A discriminative feature learning approach for deep face recognition. In European conference on computer vision (pp. 499–515). Springer.
158.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026–1034). doi: 10.1.1.725.4861. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026–1034). doi: 10.1.1.725.4861.
159.
Zurück zum Zitat Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arxiv preprint arXiv:1605.07146. Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arxiv preprint arXiv:1605.07146.
160.
Zurück zum Zitat Paul, R., et al. (2016). Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography, 2(4), 388–395. Paul, R., et al. (2016). Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography, 2(4), 388–395.
161.
Zurück zum Zitat Hussein, S., Cao, K., Song, Q., & Bagci, U. (2017). Risk stratification of lung nodules using 3d cnn-based multi-task learning. In IPMI. Hussein, S., Cao, K., Song, Q., & Bagci, U. (2017). Risk stratification of lung nodules using 3d cnn-based multi-task learning. In IPMI.
162.
Zurück zum Zitat Liu, Z., Yao, C., Yu, H. et al. (2019). Deep reinforcement learning with its application for lung cancer detection in medical internet of things. Future Generation Computer Systems. Liu, Z., Yao, C., Yu, H. et al. (2019). Deep reinforcement learning with its application for lung cancer detection in medical internet of things. Future Generation Computer Systems.
163.
Zurück zum Zitat Zhang, M., Li, H., Lyu, J., Ling, S.H., Su, S. (2019). Multi-level CNN for lung nodule classification with Gaussian Process assisted hyperparameter optimization. arXiv:1901.00276. Zhang, M., Li, H., Lyu, J., Ling, S.H., Su, S. (2019). Multi-level CNN for lung nodule classification with Gaussian Process assisted hyperparameter optimization. arXiv:​1901.​00276.
Metadaten
Titel
Lung Nodule Classification on Computed Tomography Images Using Deep Learning
verfasst von
Amrita Naik
Damodar Reddy Edla
Publikationsdatum
11.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07732-1

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt