Skip to main content
Erschienen in: Neural Computing and Applications 12/2017

13.04.2016 | Original Article

M-estimator-based online sequential extreme learning machine for predicting chaotic time series with outliers

verfasst von: Wei Guo, Tao Xu, Keming Tang

Erschienen in: Neural Computing and Applications | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An M-estimator-based online sequential extreme learning machine (M-OSELM) is proposed to predict chaotic time series with outliers. The M-OSELM develops from the online sequential extreme learning machine (OSELM) algorithm and retains the same excellent sequential learning ability as OSELM, but replaces the conventional least-squares cost function with a robust M-estimator-based cost function to enhance the robustness of the model to outliers. By minimizing the M-estimator-based cost function, the possible outliers are prevented from entering the model’s output weights updating scheme. Meanwhile, in the sequential learning process of M-OSELM, a sequential parameter estimation approach based on error sliding window is introduced to estimate the threshold value of the M-estimator function for online outlier detection. Thanks to the built-in median operation and sliding window strategy, this approach is efficient to provide a stable estimator continuously without high computational costs, and then the potential outliers can be effectively detected. Simulation results show that the proposed M-OSELM has an excellent immunity to outliers and can always achieve better performance than its counterparts for prediction of chaotic time series when the training dataset contains outliers, ensuring at the same time all benefits of an online sequential approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu J, Long J, Liu M (2015) Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 148:136–142CrossRef Wu J, Long J, Liu M (2015) Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 148:136–142CrossRef
2.
Zurück zum Zitat Akrami SA, El-Shafie A, Naseri M, Santos CA (2014) Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy. Neural Comput Appl 25(7–8):1853–1861CrossRef Akrami SA, El-Shafie A, Naseri M, Santos CA (2014) Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy. Neural Comput Appl 25(7–8):1853–1861CrossRef
3.
Zurück zum Zitat Bao Y, Wang H, Wang B (2014) Short-term wind power prediction using differential EMD and relevance vector machine. Neural Comput Appl 25(2):283–289CrossRef Bao Y, Wang H, Wang B (2014) Short-term wind power prediction using differential EMD and relevance vector machine. Neural Comput Appl 25(2):283–289CrossRef
4.
Zurück zum Zitat Patel J, Shah S, Thakkar P, Kotecha K (2015) Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Syst Appl 42(1):259–268CrossRef Patel J, Shah S, Thakkar P, Kotecha K (2015) Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Syst Appl 42(1):259–268CrossRef
5.
Zurück zum Zitat Rosillo R, Giner J, de la Fuente D (2014) The effectiveness of the combined use of VIX and support vector machines on the prediction of S&P 500. Neural Comput Appl 25(2):321–332 Rosillo R, Giner J, de la Fuente D (2014) The effectiveness of the combined use of VIX and support vector machines on the prediction of S&P 500. Neural Comput Appl 25(2):321–332
6.
Zurück zum Zitat Abdi J, Moshiri B, Abdulhai B, Sedigh AK (2013) Short-term traffic flow forecasting: parametric and nonparametric approaches via emotional temporal difference learning. Neural Comput Appl 23(1):141–159CrossRef Abdi J, Moshiri B, Abdulhai B, Sedigh AK (2013) Short-term traffic flow forecasting: parametric and nonparametric approaches via emotional temporal difference learning. Neural Comput Appl 23(1):141–159CrossRef
7.
Zurück zum Zitat Sudheer C, Maheswaran R, Panigrahi BK, Mathur S (2014) A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput Appl 24(6):1381–1389CrossRef Sudheer C, Maheswaran R, Panigrahi BK, Mathur S (2014) A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput Appl 24(6):1381–1389CrossRef
8.
Zurück zum Zitat Hodge VJ, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126CrossRefMATH Hodge VJ, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126CrossRefMATH
9.
Zurück zum Zitat Maiz CS, Molanes-Lopez EM, Miguez J, Djuric PM (2012) A particle filtering scheme for processing time series corrupted by outliers. IEEE Trans Signal Process 60(9):4611–4627MathSciNetCrossRef Maiz CS, Molanes-Lopez EM, Miguez J, Djuric PM (2012) A particle filtering scheme for processing time series corrupted by outliers. IEEE Trans Signal Process 60(9):4611–4627MathSciNetCrossRef
10.
Zurück zum Zitat Cai Y, Davies N (2003) A simple diagnostic method of outlier detection for stationary Gaussian time series. J Appl Stat 30(2):205–223MathSciNetCrossRefMATH Cai Y, Davies N (2003) A simple diagnostic method of outlier detection for stationary Gaussian time series. J Appl Stat 30(2):205–223MathSciNetCrossRefMATH
11.
Zurück zum Zitat Fu Y-Y, Wu C-J, Jeng J-T, Ko C-N (2010) ARFNNs with SVR for prediction of chaotic time series with outliers. Expert Syst Appl 37(6):4441–4451CrossRef Fu Y-Y, Wu C-J, Jeng J-T, Ko C-N (2010) ARFNNs with SVR for prediction of chaotic time series with outliers. Expert Syst Appl 37(6):4441–4451CrossRef
12.
Zurück zum Zitat Jeng J-T, Chuang C-C, Tao C-W (2010) Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers. Neurocomputing 73(10–12):1686–1693CrossRef Jeng J-T, Chuang C-C, Tao C-W (2010) Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers. Neurocomputing 73(10–12):1686–1693CrossRef
13.
Zurück zum Zitat Li D, Han M, Wang J (2012) Chaotic time series prediction based on a novel robust echo state network. IEEE Trans Neural Netw Learn Syst 23(5):787–799CrossRef Li D, Han M, Wang J (2012) Chaotic time series prediction based on a novel robust echo state network. IEEE Trans Neural Netw Learn Syst 23(5):787–799CrossRef
14.
Zurück zum Zitat Shi Z, Han M (2007) Support vector echo-state machine for chaotic time-series prediction. IEEE Trans Neural Netw 18(2):359–372CrossRef Shi Z, Han M (2007) Support vector echo-state machine for chaotic time-series prediction. IEEE Trans Neural Netw 18(2):359–372CrossRef
15.
Zurück zum Zitat Lee C-C, Chiang Y-C, Shih C-Y, Tsai C-L (2009) Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Syst Appl 36(3):4717–4724CrossRef Lee C-C, Chiang Y-C, Shih C-Y, Tsai C-L (2009) Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Syst Appl 36(3):4717–4724CrossRef
16.
Zurück zum Zitat Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRef Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423CrossRef
17.
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
18.
Zurück zum Zitat Yin J, Zou Z, Xu F, Wang N (2014) Online ship roll motion prediction based on grey sequential extreme learning machine. Neurocomputing 129:168–174CrossRef Yin J, Zou Z, Xu F, Wang N (2014) Online ship roll motion prediction based on grey sequential extreme learning machine. Neurocomputing 129:168–174CrossRef
19.
Zurück zum Zitat Wang H, Qian G, Feng XQ (2013) Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets. Neural Comput Appl 22(3–4):479–489CrossRef Wang H, Qian G, Feng XQ (2013) Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets. Neural Comput Appl 22(3–4):479–489CrossRef
20.
Zurück zum Zitat Wang X, Han M (2014) Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 145:90–97CrossRef Wang X, Han M (2014) Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 145:90–97CrossRef
21.
Zurück zum Zitat Wang J, Mao W, Wang L, Tian M (2015) Online sequential extreme learning machine with new weight-setting strategy for nonstationary time series prediction. In: Proceedings of ELM-2014, vol 1. Springer, pp 263–272 Wang J, Mao W, Wang L, Tian M (2015) Online sequential extreme learning machine with new weight-setting strategy for nonstationary time series prediction. In: Proceedings of ELM-2014, vol 1. Springer, pp 263–272
22.
Zurück zum Zitat Pan F, Zhao H (2013) Online sequential extreme learning machine based multilayer perception with output self feedback for time series prediction. J Shanghai Jiaotong Univ (Sci) 18:366–375CrossRef Pan F, Zhao H (2013) Online sequential extreme learning machine based multilayer perception with output self feedback for time series prediction. J Shanghai Jiaotong Univ (Sci) 18:366–375CrossRef
23.
Zurück zum Zitat Liao B, Zhang Z, Chan S-C (2010) A new robust Kalman filter-based subspace tracking algorithm in an impulsive noise environment. IEEE Trans Circuits Syst II Express Briefs 57(9):740–744CrossRef Liao B, Zhang Z, Chan S-C (2010) A new robust Kalman filter-based subspace tracking algorithm in an impulsive noise environment. IEEE Trans Circuits Syst II Express Briefs 57(9):740–744CrossRef
24.
Zurück zum Zitat Deng W, Zheng Q, Chen L (2009) Regularized extreme learning machine. In: Proceedings of IEEE symposium on computational intelligence and data mining, pp 389–395 Deng W, Zheng Q, Chen L (2009) Regularized extreme learning machine. In: Proceedings of IEEE symposium on computational intelligence and data mining, pp 389–395
25.
Zurück zum Zitat Li G, Niu P (2013) An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl 22(3–4):803–810CrossRef Li G, Niu P (2013) An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl 22(3–4):803–810CrossRef
26.
Zurück zum Zitat Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529CrossRef Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529CrossRef
27.
Zurück zum Zitat Huynh HT, Won Y (2011) Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks. Pattern Recogn Lett 32(14):1930–1935CrossRef Huynh HT, Won Y (2011) Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks. Pattern Recogn Lett 32(14):1930–1935CrossRef
28.
Zurück zum Zitat Huang G-B, Chen L, Siew C-K (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef Huang G-B, Chen L, Siew C-K (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef
29.
Zurück zum Zitat Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16):3056–3062CrossRef Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16):3056–3062CrossRef
30.
Zurück zum Zitat Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16):3460–3468CrossRef Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16):3460–3468CrossRef
31.
Zurück zum Zitat Zhang R, Lan Y, Huang G-B, Xu Z-B (2012) Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans Neural Netw Learn Syst 23(2):365–371CrossRef Zhang R, Lan Y, Huang G-B, Xu Z-B (2012) Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans Neural Netw Learn Syst 23(2):365–371CrossRef
32.
Zurück zum Zitat Chng E, Chen S, Mulgrew B (1996) Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Trans Neural Netw 7(1):190–194CrossRef Chng E, Chen S, Mulgrew B (1996) Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Trans Neural Netw 7(1):190–194CrossRef
33.
Zurück zum Zitat Chan S-C, Zou Y-X (2004) A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans Signal Process 52(4):975–991MathSciNetCrossRefMATH Chan S-C, Zou Y-X (2004) A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans Signal Process 52(4):975–991MathSciNetCrossRefMATH
34.
Zurück zum Zitat Golub GH, Van Loan CF (2013) Matrix computations, vol 4. JHU Press, BaltimoreMATH Golub GH, Van Loan CF (2013) Matrix computations, vol 4. JHU Press, BaltimoreMATH
35.
Zurück zum Zitat Zou Y, Chan S, Ng T (2000) A recursive least M-estimate (RLM) adaptive filter for robust filtering in impulse noise. IEEE Signal Process Lett 7(11):324–326CrossRef Zou Y, Chan S, Ng T (2000) A recursive least M-estimate (RLM) adaptive filter for robust filtering in impulse noise. IEEE Signal Process Lett 7(11):324–326CrossRef
36.
Zurück zum Zitat Rousseeuw PJ, Leroy AM (2005) Robust regression and outlier detection, vol 589. Wiley, New YorkMATH Rousseeuw PJ, Leroy AM (2005) Robust regression and outlier detection, vol 589. Wiley, New YorkMATH
37.
Zurück zum Zitat Horata P, Chiewchanwattana S, Sunat K (2015) Enhancement of online sequential extreme learning machine based on the householder block exact inverse QRD recursive least squares. Neurocomputing 149:239–252CrossRef Horata P, Chiewchanwattana S, Sunat K (2015) Enhancement of online sequential extreme learning machine based on the householder block exact inverse QRD recursive least squares. Neurocomputing 149:239–252CrossRef
38.
Zurück zum Zitat Ardalani-Farsa M, Zolfaghari S (2013) Taguchi’s design of experiment in combination selection for a chaotic time series forecasting method using ensemble artificial neural networks. Cybernet Syst 44(4):351–377CrossRef Ardalani-Farsa M, Zolfaghari S (2013) Taguchi’s design of experiment in combination selection for a chaotic time series forecasting method using ensemble artificial neural networks. Cybernet Syst 44(4):351–377CrossRef
39.
Zurück zum Zitat Chandra R, Zhang M (2012) Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86:116–123CrossRef Chandra R, Zhang M (2012) Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86:116–123CrossRef
40.
Zurück zum Zitat Ardalani-Farsa M, Zolfaghari S (2010) Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks. Neurocomputing 73(13):2540–2553CrossRef Ardalani-Farsa M, Zolfaghari S (2010) Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks. Neurocomputing 73(13):2540–2553CrossRef
41.
Zurück zum Zitat Zhang X, Wang H-L (2011) Selective forgetting extreme learning machine and its application to time series prediction. Acta Phys Sin 60(8):68–74 Zhang X, Wang H-L (2011) Selective forgetting extreme learning machine and its application to time series prediction. Acta Phys Sin 60(8):68–74
42.
Zurück zum Zitat Uçar A, Yavşan E (2016) Behavior learning of a memristor-based chaotic circuit by extreme learning machines. Turk J Elec Eng & Comp Sci 24(1):121–140CrossRef Uçar A, Yavşan E (2016) Behavior learning of a memristor-based chaotic circuit by extreme learning machines. Turk J Elec Eng & Comp Sci 24(1):121–140CrossRef
Metadaten
Titel
M-estimator-based online sequential extreme learning machine for predicting chaotic time series with outliers
verfasst von
Wei Guo
Tao Xu
Keming Tang
Publikationsdatum
13.04.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 12/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2301-0

Weitere Artikel der Ausgabe 12/2017

Neural Computing and Applications 12/2017 Zur Ausgabe