Skip to main content

2021 | OriginalPaper | Buchkapitel

Machine Learning Applications for Computer-Aided Medical Diagnostics

verfasst von : Parita Oza, Paawan Sharma, Samir Patel

Erschienen in: Proceedings of Second International Conference on Computing, Communications, and Cyber-Security

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning has made potential developments in biotechnology. Years of medical training are required for correct diagnosis of diseases. Diagnostics is often a very time-consuming process, and it requires strenuous effort. Data generated through varieties of imaging modalities for the diagnoses purpose is very bulky. In the corporate and government hospitals, a high number of patients are visiting per day for the disease diagnosis and treatment. This may cause diagnosis burden on the clinicians and radiologist. For interpretation, overload of image data may produce oversight and observational errors. Machine learning algorithms have recently made huge advancements in automated disease detection and classification. These algorithms can learn to view the patterns in an image similarly the way doctors do by training those using lots of annotated examples. Various machine learning algorithms used for automated diagnosis in medical imaging filed are discussed in the paper. Comparative analysis of these algorithms based on different parameters is also presented. This paper also focused at various applications of machine learning in diagnostic imaging, which can be part of routine clinical work for detection and classification of the process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat Pillai R, Oza P, Sharma P (2020) Review of machine learning techniques in health care. In: Singh P, Kar A, Singh Y, Kolekar M, Tanwar S (eds) Proceedings of ICRIC 2019. Lecture Notes in Electrical Engineering, vol 597. Springer, Cham Pillai R, Oza P, Sharma P (2020) Review of machine learning techniques in health care. In: Singh P, Kar A, Singh Y, Kolekar M, Tanwar S (eds) Proceedings of ICRIC 2019. Lecture Notes in Electrical Engineering, vol 597. Springer, Cham
8.
Zurück zum Zitat McBee MP et al (2018) Deep learning in radiology. Acad Radiol 25(11):1472–1480CrossRef McBee MP et al (2018) Deep learning in radiology. Acad Radiol 25(11):1472–1480CrossRef
9.
Zurück zum Zitat Zhang Zhenwei, Sejdić Ervin (2019) Radiological images and machine learning: trends, perspectives, and prospects. Comput Biol Med 108:354–370CrossRef Zhang Zhenwei, Sejdić Ervin (2019) Radiological images and machine learning: trends, perspectives, and prospects. Comput Biol Med 108:354–370CrossRef
11.
Zurück zum Zitat Torheim T, Malinen E, Kvaal K, Lyng H, Indahl UG, Andersen EKF, Futsaether CM (2014) Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans Med Imag 33(8):1648–1656CrossRef Torheim T, Malinen E, Kvaal K, Lyng H, Indahl UG, Andersen EKF, Futsaether CM (2014) Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans Med Imag 33(8):1648–1656CrossRef
13.
Zurück zum Zitat Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International conference on medical image computing and computer-assisted intervention, pp 246–253 Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International conference on medical image computing and computer-assisted intervention, pp 246–253
14.
Zurück zum Zitat Cruz-Roa AA, Arevalo Ovalle JE, Madabhushi A, González Osorio FA (2013) A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: International conference on medical image computing and computer-assisted intervention, p 403 Cruz-Roa AA, Arevalo Ovalle JE, Madabhushi A, González Osorio FA (2013) A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: International conference on medical image computing and computer-assisted intervention, p 403
15.
Zurück zum Zitat Banerjee I et al (2019) Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif Intell Med 97:79–88CrossRef Banerjee I et al (2019) Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif Intell Med 97:79–88CrossRef
16.
Zurück zum Zitat Lee C et al (2019) Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol 212(4):734–740CrossRef Lee C et al (2019) Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol 212(4):734–740CrossRef
17.
Zurück zum Zitat Shim EJ et al (2020) An MRI-based decision tree to distinguish lipomas and lipoma variants from well-differentiated liposarcoma of the extremity and superficial trunk: classification and regression tree (CART) analysis. Eur J Radiol, p 109012 Shim EJ et al (2020) An MRI-based decision tree to distinguish lipomas and lipoma variants from well-differentiated liposarcoma of the extremity and superficial trunk: classification and regression tree (CART) analysis. Eur J Radiol, p 109012
18.
Zurück zum Zitat Pitcher B et al (2017) Binary decision trees for preoperative periapical cyst screening using cone-beam computed tomography. J Endod 43(3):383–388CrossRef Pitcher B et al (2017) Binary decision trees for preoperative periapical cyst screening using cone-beam computed tomography. J Endod 43(3):383–388CrossRef
19.
Zurück zum Zitat Jog A et al (2017) Random forest regression for magnetic resonance image synthesis. Medical image analysis 35:475–488CrossRef Jog A et al (2017) Random forest regression for magnetic resonance image synthesis. Medical image analysis 35:475–488CrossRef
20.
Zurück zum Zitat Huynh T et al (2015) Multi-source information gain for random forest: an application to CT image prediction from MRI data. In: International workshop on machine learning in medical imaging, pp 321–329. Springer, Cham Huynh T et al (2015) Multi-source information gain for random forest: an application to CT image prediction from MRI data. In: International workshop on machine learning in medical imaging, pp 321–329. Springer, Cham
22.
Zurück zum Zitat Wernick M, Yang Y, Brankov J, Yourganov G, Strother S (2010) Machine learning in medical imaging signal processing magazine. IEEE 27(4):25–38 Wernick M, Yang Y, Brankov J, Yourganov G, Strother S (2010) Machine learning in medical imaging signal processing magazine. IEEE 27(4):25–38
23.
Zurück zum Zitat Polan DF, Brady SL, Kaufman RA (2016) Tissue segmentation of computed tomography images using a random forest algorithm: a feasibility study. PhysMed Biol 61(17):6553–6569 Polan DF, Brady SL, Kaufman RA (2016) Tissue segmentation of computed tomography images using a random forest algorithm: a feasibility study. PhysMed Biol 61(17):6553–6569
25.
Zurück zum Zitat Sutton D, Textbook of radiology and imaging, 3rd edn. Sutton D, Textbook of radiology and imaging, 3rd edn.
26.
Zurück zum Zitat De Sanctis V, Di Maio S, Soliman AT, Raiola G, Elalaily R, Millimaggi G (2014) Hand X-ray in pediatric endocrinology: Skeletal age assessment and beyond. Indian J Endocrinol Metabol 18(7):63CrossRef De Sanctis V, Di Maio S, Soliman AT, Raiola G, Elalaily R, Millimaggi G (2014) Hand X-ray in pediatric endocrinology: Skeletal age assessment and beyond. Indian J Endocrinol Metabol 18(7):63CrossRef
27.
Zurück zum Zitat Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imag Graph 31:198–211CrossRef Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imag Graph 31:198–211CrossRef
28.
Zurück zum Zitat Shiraishi J, Li Q, Appelbaum D, Pu Y, Doi K (2006) Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body scans. Med Phys (in press [PubMed]) Shiraishi J, Li Q, Appelbaum D, Pu Y, Doi K (2006) Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body scans. Med Phys (in press [PubMed])
29.
Zurück zum Zitat Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ (2015) Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports. Appl Clin Inform 6(3):600–610CrossRef Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ (2015) Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports. Appl Clin Inform 6(3):600–610CrossRef
30.
Zurück zum Zitat Hassanpour S, Langlotz CP, Amrhein TJ, Befera NT, Lungren MP (2017) Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: a tool to estimate diagnostic yield. AJR Am J Roentgenol 208(4):750–753CrossRef Hassanpour S, Langlotz CP, Amrhein TJ, Befera NT, Lungren MP (2017) Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: a tool to estimate diagnostic yield. AJR Am J Roentgenol 208(4):750–753CrossRef
32.
Zurück zum Zitat Glocker B, Feulner J, Criminisi A, Haynor DR, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: International conference on medical image computing and computer assisted intervention Glocker B, Feulner J, Criminisi A, Haynor DR, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: International conference on medical image computing and computer assisted intervention
34.
Zurück zum Zitat Kumar Ashnil, Kim Jinman, Cai Weidong, Fulham Michael, Feng Dagan (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging 26(6):1025–1039CrossRef Kumar Ashnil, Kim Jinman, Cai Weidong, Fulham Michael, Feng Dagan (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging 26(6):1025–1039CrossRef
35.
Zurück zum Zitat Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I (2017) Deep mr to ct synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging. Springer, pp 14–23 Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I (2017) Deep mr to ct synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging. Springer, pp 14–23
36.
Zurück zum Zitat Jin CB, Kim H, Liu M, Jung W, Joo S, Park E, Ahn YS, Han IH, Lee JI, Cui X (2019) Deep CT to MR synthesis using paired and unpaired data. Sensors 19(10):2361–2379CrossRef Jin CB, Kim H, Liu M, Jung W, Joo S, Park E, Ahn YS, Han IH, Lee JI, Cui X (2019) Deep CT to MR synthesis using paired and unpaired data. Sensors 19(10):2361–2379CrossRef
37.
Zurück zum Zitat Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imag 37(6):1348–1357CrossRef Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imag 37(6):1348–1357CrossRef
38.
Zurück zum Zitat Wang J, Lu H, Li T, Liang Z (2005) Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters. In: Medical imaging 2005: image processing, vol 5747. International Society for Optics and Photonics, pp 2058–2067 Wang J, Lu H, Li T, Liang Z (2005) Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters. In: Medical imaging 2005: image processing, vol 5747. International Society for Optics and Photonics, pp 2058–2067
39.
Zurück zum Zitat Wang J, Li T, Lu H, Liang Z (2006) Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography. IEEE Trans Med Imag 25(10):1272–1283CrossRef Wang J, Li T, Lu H, Liang Z (2006) Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography. IEEE Trans Med Imag 25(10):1272–1283CrossRef
40.
Zurück zum Zitat Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, Fletcher JG (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919CrossRef Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, Fletcher JG (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919CrossRef
41.
Zurück zum Zitat Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med Eur J Med Phys 28(2):94–108 Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med Eur J Med Phys 28(2):94–108
42.
Zurück zum Zitat Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(3):764–771CrossRef Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(3):764–771CrossRef
43.
Zurück zum Zitat Ma J, Huang J, Feng Q, Zhang H, Lu H, Liang Z, Chen W (2011) Low-dose computed tomography image restoration using previous normal-dose scan. Med Phys 38(10):5713–5731CrossRef Ma J, Huang J, Feng Q, Zhang H, Lu H, Liang Z, Chen W (2011) Low-dose computed tomography image restoration using previous normal-dose scan. Med Phys 38(10):5713–5731CrossRef
44.
Zurück zum Zitat Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux J-L, Toumoulin C (2013) Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol 58(16):5803CrossRef Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux J-L, Toumoulin C (2013) Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol 58(16):5803CrossRef
45.
Zurück zum Zitat Feruglio PF, Vinegoni C, Gros J, Sbarbati A, Weissleder R (2010) Block matching 3D random noise filtering for absorption optical projection tomography. Phys Med Biol 55(18):5401CrossRef Feruglio PF, Vinegoni C, Gros J, Sbarbati A, Weissleder R (2010) Block matching 3D random noise filtering for absorption optical projection tomography. Phys Med Biol 55(18):5401CrossRef
46.
Zurück zum Zitat Singh PK, Kar AK, Singh Y, Kolekar MH, Tanwar S (eds) (2019) Proceedings of ICRIC 2019: recent innovations in computing, vol 597. Springer Nature Singh PK, Kar AK, Singh Y, Kolekar MH, Tanwar S (eds) (2019) Proceedings of ICRIC 2019: recent innovations in computing, vol 597. Springer Nature
Metadaten
Titel
Machine Learning Applications for Computer-Aided Medical Diagnostics
verfasst von
Parita Oza
Paawan Sharma
Samir Patel
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0733-2_26

Neuer Inhalt