Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.12.2016 | Original Article | Ausgabe 6/2016

International Journal of Machine Learning and Cybernetics 6/2016

Machine learning approach for detection of flooding DoS attacks in 802.11 networks and attacker localization

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 6/2016
Autoren:
Mayank Agarwal, Dileep Pasumarthi, Santosh Biswas, Sukumar Nandi

Abstract

IEEE 802.11 Wi-Fi networks are prone to a large number of Denial of Service (DoS) attacks due to vulnerabilities at the media access control (MAC) layer of 802.11 protocol. In this work, we focus on the flooding DoS attacks in Wi-Fi networks. In flooding DoS attacks, a large number of legitimate looking spoofed requests are transmitted to a victim access point (AP). The processing of large number of spoofed frames results in a huge load at the AP, resulting in a flooding DoS attack. Current methods to detect the flooding DoS use encryption, signal characteristics, protocol modification, upgradation to newer standards etc. which are often expensive to operate and maintain. In this paper, we propose a novel Machine Learning (ML) based intrusion detection system along with intrusion prevention system (IPS) that not only detects the flooding DoS attacks in Wi-Fi networks, but also helps the victim station (STA) in recovering swiftly from the attack. To the best of our knowledge, the usage of ML based techniques for detection of flooding DoS attacks in 802.11 networks has largely been unexplored. The ML based IDS detects the flooding DoS attacks with a high accuracy (precision) and detection rate (recall). After the attack is detected, the location of the attacker is ascertained using Angle of Arrival based localization algorithm and traffic coming from the attacker region is blocked which helps in mitigating the effect of flooding DoS attack.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2016

International Journal of Machine Learning and Cybernetics 6/2016 Zur Ausgabe