Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.11.2017

Machine Learning Based Big Data Processing Framework for Cancer Diagnosis Using Hidden Markov Model and GM Clustering

Zeitschrift:
Wireless Personal Communications
Autoren:
Gunasekaran Manogaran, V. Vijayakumar, R. Varatharajan, Priyan Malarvizhi Kumar, Revathi Sundarasekar, Ching-Hsien Hsu

Abstract

The change in the DNA is a form of genetic variation in the human genome. In addition, the DNA copy number change is also linked with the progression of many emerging diseases. Array-based Comparative Genomic Hybridization (CGH) is considered as a major task when measuring the DNA copy number change across the genome. Moreover, DNA copy number change is an essential measure to diagnose the cancer disease. Next generation sequencing is an important method for studying the spread of infectious disease qualitatively and quantitatively. CGH is widely used in continuous monitoring of copy number of thousands of genes throughout the genome. In recent years, the size of the DNA sequence data is very large. Hence, there is a need to use a scalable machine learning approach to overcome the various issues in DNA copy number change detection. In this paper, we use a Bayesian hidden Markov model (HMM) with Gaussian Mixture (GM) Clustering approach to model the DNA copy number change across the genome. The proposed Bayesian HMM with GM Clustering approach is compared with various existing approaches such as Pruned Exact Linear Time method, binary segmentation method and segment neighborhood method. Experimental results demonstrate the effectiveness of our proposed change detection algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Effizienzsteigerung durch die und in der Magnetlagertechnik

Magnetlager sind aus etlichen industriellen Anwendungen nicht mehr wegzudenken, in anderen erscheint ein Einsatz in Zukunft vielversprechend. Durch die Magnetlagertechnik werden Effizienzsteigerungen unterschiedlicher Art ermöglicht – sowohl auf direkte Weise durch Verringerung der Lagerverluste im Vergleich zu mechanischen Lagerungen, als auch durch Verbesserungen im industriellen Prozess, die erst durch die besonderen Eigenschaften der Magnetlagerung erzielt werden können.
Jetzt gratis downloaden!

Bildnachweise