Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.12.2016 | Research | Ausgabe 1/2016 Open Access

EURASIP Journal on Wireless Communications and Networking 1/2016

Machine learning-based dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments

Zeitschrift:
EURASIP Journal on Wireless Communications and Networking > Ausgabe 1/2016
Autoren:
Biljana Bojović, Elena Meshkova, Nicola Baldo, Janne Riihijärvi, Marina Petrova

Abstract

Self-organizing networks (SONs) are expected to minimize operational and capital expenditure of the operators while improving the end users’ quality of experience. To achieve these goals, the SON solutions are expected to learn from the environment and to be able to dynamically adapt to it. In this work, we propose a learning-based approach for self-optimization in SON deployments. In the proposed approach, the learning capability has the central role to perform the estimation of key performance indicators (KPIs) which are then exploited for the selection of the optimal network configuration. We apply this approach to the use case of dynamic frequency and bandwidth assignments (DFBA) in long-term evolution (LTE) residential small cell network deployments. For the implementation of the learning capability and the estimation of KPIs, we select and investigate various machine learning and statistical regression techniques. We provide a comprehensive analysis and comparison of these techniques evaluating the different factors that can influence the accuracy of the KPI predictions and consequently the performance of the network. Finally, we evaluate the performance of learning-based DFBA solution and compare it with the legacy approach and against an optimal exhaustive search for best configuration. The results show that the learning-based DFBA achieves on average a performance improvement of 33 % over approaches that are based on analytical models, reaching 95 % of the optimal network performance while leveraging just a small number of network measurements.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2016

EURASIP Journal on Wireless Communications and Networking 1/2016 Zur Ausgabe

Premium Partner

    Bildnachweise