Skip to main content

10.02.2025 | Original Paper

Machine learning-based ensemble framework for event identification and power quality disturbance analysis in PV-EV distribution networks

verfasst von: Yulong Liu, Tao Jin, Mohamed A. Mohamed

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effective analysis and classification of operational events in distribution networks (DNs), particularly those involving photovoltaic (PV) systems and electric vehicle charging stations (EVCSs), are essential for mitigating potential disturbances. This paper introduces a robust ensemble framework designed for power quality disturbance (PQD) analysis and event classification within DNs. The methodology begins with an enhanced empirical wavelet transform (EEWT), which incorporates spectral trends and window functions to accurately decompose PQDs caused by various events. These decomposed signals are then analyzed for amplitude and frequency characteristics using a mean sliding window-improved Hilbert transform (IHT). Based on these decompositions and inherent periodic features, a scale and cycle-based feature set, including time-dependent spectral features (TDSF), is formulated to differentiate between events. This feature set is subsequently classified using a light gradient boosting machine (LightGBM) to ensure precise event identification. The proposed approach is validated on a modified IEEE 13-node DN integrated with PV systems and EVCSs, simulating scenarios such as synchronization, outages and islanding. Under various noise conditions, the average accuracy of event identification reaches 99.33%, significantly outperforming other benchmark methods. Furthermore, the method's effectiveness is verified through real-time hardware-in-the-loop simulation, achieving an event identification accuracy of 98.33%. The results demonstrate that the proposed framework exhibits enhanced robustness and lower computational complexity compared to existing state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fachrizal R, Ramadhani U, Hanif; Munkhammar, Joakim; Widén, Joakim, (2021) Combined PV–EV hosting capacity assessment for a residential LV distribution grid with smart EV charging and PV curtailment. Sustain Energy Grids Netw 26(5):100445CrossRefMATH Fachrizal R, Ramadhani U, Hanif; Munkhammar, Joakim; Widén, Joakim, (2021) Combined PV–EV hosting capacity assessment for a residential LV distribution grid with smart EV charging and PV curtailment. Sustain Energy Grids Netw 26(5):100445CrossRefMATH
2.
Zurück zum Zitat Chen L, Gao L, Xing S, Chen Z, Wang W (2024) Zero-carbon microgrid: real-world cases, trends, challenges, and future research prospects. Renew Sustain Energy Rev 203:1–10CrossRefMATH Chen L, Gao L, Xing S, Chen Z, Wang W (2024) Zero-carbon microgrid: real-world cases, trends, challenges, and future research prospects. Renew Sustain Energy Rev 203:1–10CrossRefMATH
3.
Zurück zum Zitat Ding Y, Liu Y, Lan M, Jin T, Mohamed MA (2022) A novel recognition method for complex power quality disturbances based on visualization trajectory circle and machine vision. IEEE Trans Instrum Meas 71:1–13MATH Ding Y, Liu Y, Lan M, Jin T, Mohamed MA (2022) A novel recognition method for complex power quality disturbances based on visualization trajectory circle and machine vision. IEEE Trans Instrum Meas 71:1–13MATH
4.
Zurück zum Zitat Chen L, Xie X, He J, Xu T, Xu D, Ma N (2023) Wideband oscillation monitoring in power systems with high-penetration of renewable energy sources and power electronics: a review. Renew Sustain Energy Rev 175:1–11CrossRefMATH Chen L, Xie X, He J, Xu T, Xu D, Ma N (2023) Wideband oscillation monitoring in power systems with high-penetration of renewable energy sources and power electronics: a review. Renew Sustain Energy Rev 175:1–11CrossRefMATH
5.
Zurück zum Zitat Chen Z, Jin T, Zheng X, Liu Y, Zhuang Z, Mohamed AM (2022) An innovative method-based CEEMDAN–IGWO–GRU hybrid algorithm for short-term load forecasting. Electr Eng 104(5):3137–3156CrossRef Chen Z, Jin T, Zheng X, Liu Y, Zhuang Z, Mohamed AM (2022) An innovative method-based CEEMDAN–IGWO–GRU hybrid algorithm for short-term load forecasting. Electr Eng 104(5):3137–3156CrossRef
6.
Zurück zum Zitat Caicedo JE, Agudelo-Martínez D, Rivas-Trujillo E, Meyer J (2023) A critical review of detection and classification of power quality events. Prot Control Modern Power Syst 8(3):1–37MATH Caicedo JE, Agudelo-Martínez D, Rivas-Trujillo E, Meyer J (2023) A critical review of detection and classification of power quality events. Prot Control Modern Power Syst 8(3):1–37MATH
7.
Zurück zum Zitat Cho SH, Shin HC, Lee JB, Jung HS, Shin SK (2019) An effective detection method of voltage and frequency fluctuations based on a combination of TEO/DESA and STFT analysis. J Electr Eng Technol. 14:985–991CrossRefMATH Cho SH, Shin HC, Lee JB, Jung HS, Shin SK (2019) An effective detection method of voltage and frequency fluctuations based on a combination of TEO/DESA and STFT analysis. J Electr Eng Technol. 14:985–991CrossRefMATH
8.
Zurück zum Zitat Düzgün A (2020) Approximate-derivative-based signal-processing method to segment power-quality disturbances. IET Gener Transm Distrib 14(21):4835–4846CrossRefMATH Düzgün A (2020) Approximate-derivative-based signal-processing method to segment power-quality disturbances. IET Gener Transm Distrib 14(21):4835–4846CrossRefMATH
9.
Zurück zum Zitat Yang Z, Hua H, Cao J (2023) Multiple impact factor based accuracy analysis for power quality disturbance detection. CSEE J Power Energy Syst 9(1):88–99MATH Yang Z, Hua H, Cao J (2023) Multiple impact factor based accuracy analysis for power quality disturbance detection. CSEE J Power Energy Syst 9(1):88–99MATH
11.
Zurück zum Zitat Li P, Zhang H, Xiang W, Jia Q (2023) A fast adaptive S-transform for complex quality disturbance feature extraction. IEEE Trans Ind Electron 70(5):5266–5276CrossRefMATH Li P, Zhang H, Xiang W, Jia Q (2023) A fast adaptive S-transform for complex quality disturbance feature extraction. IEEE Trans Ind Electron 70(5):5266–5276CrossRefMATH
12.
Zurück zum Zitat Yuan L, Zhang C, Yin B, Li B, Zuo L (2022) Accurate and fast feature extraction method of power quality disturbances based on modified S-transform of optimal bohman window. J Electron Inf Technol 44(11):3796–3805MATH Yuan L, Zhang C, Yin B, Li B, Zuo L (2022) Accurate and fast feature extraction method of power quality disturbances based on modified S-transform of optimal bohman window. J Electron Inf Technol 44(11):3796–3805MATH
14.
Zurück zum Zitat Kishor NN, Rupal SH, Mohanty SR, Yadav O (2021) Evolving disturbances detection and classification in real-time for grid-connected system. In IEEE Trans Ind Electron 68(9):8265–8273CrossRefMATH Kishor NN, Rupal SH, Mohanty SR, Yadav O (2021) Evolving disturbances detection and classification in real-time for grid-connected system. In IEEE Trans Ind Electron 68(9):8265–8273CrossRefMATH
19.
Zurück zum Zitat Thirumala K, Umarikar AC, Jain T (2019) An improved adaptive filtering approach for power quality analysis of time-varying waveforms. Measurement 131:677–685CrossRefMATH Thirumala K, Umarikar AC, Jain T (2019) An improved adaptive filtering approach for power quality analysis of time-varying waveforms. Measurement 131:677–685CrossRefMATH
20.
Zurück zum Zitat Mahela OP, Shaik AG, Gupta N, Khosravy M, Khan B, Alhelou HH, Padmanaban S (2021) Recognition of power quality issues associated with grid integrated solar photovoltaic plant in experimental framework. IEEE Syst J 15(3):3740–3748CrossRef Mahela OP, Shaik AG, Gupta N, Khosravy M, Khan B, Alhelou HH, Padmanaban S (2021) Recognition of power quality issues associated with grid integrated solar photovoltaic plant in experimental framework. IEEE Syst J 15(3):3740–3748CrossRef
23.
Zurück zum Zitat Mania B, Mohammad TA, Meysam A, Majid B (2022) Dual identification of multi-complex and non-stationary power quality disturbances using variational mode decomposition in hybrid modern power systems. Arab J Sci Eng 47:14389–14409CrossRefMATH Mania B, Mohammad TA, Meysam A, Majid B (2022) Dual identification of multi-complex and non-stationary power quality disturbances using variational mode decomposition in hybrid modern power systems. Arab J Sci Eng 47:14389–14409CrossRefMATH
30.
Zurück zum Zitat Liu Y, Jin T, Mohamed MA (2023) A novel dual-attention optimization model for points classification of power quality disturbances. Appl Energy 339:121011CrossRef Liu Y, Jin T, Mohamed MA (2023) A novel dual-attention optimization model for points classification of power quality disturbances. Appl Energy 339:121011CrossRef
Metadaten
Titel
Machine learning-based ensemble framework for event identification and power quality disturbance analysis in PV-EV distribution networks
verfasst von
Yulong Liu
Tao Jin
Mohamed A. Mohamed
Publikationsdatum
10.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02969-0