Skip to main content

2023 | OriginalPaper | Buchkapitel

Machine Learning Based Spectrum Sensing for Secure Data Transmission Using Cuckoo Search Optimization

verfasst von : E. V. Vijay, K. Aparna

Erschienen in: Intelligent Systems and Machine Learning

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article is about machine Learning (ML) depending spectrum sensing in using cuckoo search optimization method. In Present days as the number of mobile users is increasing, scarcity of spectrum is arising due to allocation of the available spectrum to growing number of the users in cognitive radio. So there is a need to efficiently utilize the limited spectrum that is available for use. Spectrum sensing is one of the prominent method for effective utilization of the spectrum. Among the existing methods of spectrum sensing using Energy detection, Machine learning based sensing is more prominent. For efficiently optimizing the spectrum sensing cuckoo search based optimization has been used in this paper. For analyzing the channels under noise conditions Gaussian function has been considered. Average information per message based classifier is a good technique of detection for spectrum sensing. Classification has been done with the help of support vector machine and K-Nearest Neighbor algorithms. From the obtained results it has been shown that average information based SVM, KNN techniques outperforms the conventional energy detection based techniques and cuckoo search based optimization has yielded better sensing accuracy with minimum loss.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saravanan, P., et al.: A supervised learning approach for differential entropy feature-based spectrum sensing. In: 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE (2021) Saravanan, P., et al.: A supervised learning approach for differential entropy feature-based spectrum sensing. In: 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE (2021)
2.
Zurück zum Zitat Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials 11(1), 116–130 (2009)CrossRef Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials 11(1), 116–130 (2009)CrossRef
3.
Zurück zum Zitat Gurugopinath, S., Muralishankar, R.: Geometric power detector for spectrum sensing under symmetric alpha stable noise. Electron. Lett. 54(22), 1284–1286 (2018) Gurugopinath, S., Muralishankar, R.: Geometric power detector for spectrum sensing under symmetric alpha stable noise. Electron. Lett. 54(22), 1284–1286 (2018)
4.
Zurück zum Zitat Gurugopinath, S., Muralishankar, R., Shankar, H.N.: Differential entropy-driven spectrum sensing under generalized Gaussian noise. IEEE Commun. Lett. 20(7), 1321–1324 (2016) Gurugopinath, S., Muralishankar, R., Shankar, H.N.: Differential entropy-driven spectrum sensing under generalized Gaussian noise. IEEE Commun. Lett. 20(7), 1321–1324 (2016)
5.
Zurück zum Zitat Qi, H., Zhang, X., Gao, Y.: Channel energy statistics learning in compressive spectrum sensing. IEEE Trans. Wireless Commun. 17(12), 7910–7921 (2018)CrossRef Qi, H., Zhang, X., Gao, Y.: Channel energy statistics learning in compressive spectrum sensing. IEEE Trans. Wireless Commun. 17(12), 7910–7921 (2018)CrossRef
6.
Zurück zum Zitat Zahabi, S.J., Tadaion, A.A.: Local spectrum sensing in non-Gaussian noise. In: 2010 17th International Conference on Telecommunications. IEEE (2010) Zahabi, S.J., Tadaion, A.A.: Local spectrum sensing in non-Gaussian noise. In: 2010 17th International Conference on Telecommunications. IEEE (2010)
7.
Zurück zum Zitat Jakkula, V.: Tutorial on support vector machine (SVM). School of EECS, Washington State University 37.2.5, p. 3 (2006) Jakkula, V.: Tutorial on support vector machine (SVM). School of EECS, Washington State University 37.2.5, p. 3 (2006)
8.
Zurück zum Zitat Auria, L., Moro, R.A.: Support vector machines (SVM) as a technique for solvency analysis (2008) Auria, L., Moro, R.A.: Support vector machines (SVM) as a technique for solvency analysis (2008)
9.
Zurück zum Zitat Zhang, M.-L., Zhou, Z.-H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefMATH Zhang, M.-L., Zhou, Z.-H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefMATH
11.
Zurück zum Zitat Zhu, X.J.: Semi-supervised learning literature survey (2005) Zhu, X.J.: Semi-supervised learning literature survey (2005)
12.
Zurück zum Zitat Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning (2006) Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning (2006)
15.
Zurück zum Zitat Wang, H., et al.: Spectrum sensing in cognitive radio using goodness of fit testing. IEEE Trans. Wirel. Commun. 8(11), 5427–5430 (2009) Wang, H., et al.: Spectrum sensing in cognitive radio using goodness of fit testing. IEEE Trans. Wirel. Commun. 8(11), 5427–5430 (2009)
16.
Zurück zum Zitat Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013) Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)
17.
Zurück zum Zitat Joshi, A.S., et al.: Cuckoo search optimization-a review. Mater. Today Proc. 4(8), 7262–7269 (2017) Joshi, A.S., et al.: Cuckoo search optimization-a review. Mater. Today Proc. 4(8), 7262–7269 (2017)
19.
20.
Zurück zum Zitat Chong, E.K.P., Zak, S.H.: An Introduction to Optimization. Wiley (2004) Chong, E.K.P., Zak, S.H.: An Introduction to Optimization. Wiley (2004)
21.
Zurück zum Zitat Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Soc. Ind. Appl. Math. (2019) Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Soc. Ind. Appl. Math. (2019)
22.
Zurück zum Zitat Liu, X., Tan, X.: Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. Int. J. Commun Syst 27(5), 705–720 (2014)CrossRef Liu, X., Tan, X.: Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. Int. J. Commun Syst 27(5), 705–720 (2014)CrossRef
23.
Zurück zum Zitat Zhang, R., Jiang, X., Li, R.: Improved decomposition-based multi-objective cuckoo search algorithm for spectrum allocation in cognitive vehicular network. Phys. Commun. 34, 301–309 (2019)CrossRef Zhang, R., Jiang, X., Li, R.: Improved decomposition-based multi-objective cuckoo search algorithm for spectrum allocation in cognitive vehicular network. Phys. Commun. 34, 301–309 (2019)CrossRef
24.
Zurück zum Zitat Yuan, W., et al.: Improved cuckoo search algorithm for spectrum sensing in sparse satellite cognitive systems. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). IEEE (2016) Yuan, W., et al.: Improved cuckoo search algorithm for spectrum sensing in sparse satellite cognitive systems. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). IEEE (2016)
25.
Zurück zum Zitat Xin, Z., Zhang, D., Chen, Z.: Spectrum allocation of cognitive radio network based on improved cuckoo search algorithm. In: Proceedings of the 2nd International Conference on Computer Science and Software Engineering (2019) Xin, Z., Zhang, D., Chen, Z.: Spectrum allocation of cognitive radio network based on improved cuckoo search algorithm. In: Proceedings of the 2nd International Conference on Computer Science and Software Engineering (2019)
Metadaten
Titel
Machine Learning Based Spectrum Sensing for Secure Data Transmission Using Cuckoo Search Optimization
verfasst von
E. V. Vijay
K. Aparna
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_33